skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Revealing reaction mechanisms of nanoconfined Li 2 S: implications for lithium–sulfur batteries

Abstract

Using Li2S as an active material and designing nanostructured cathode hosts are considered as promising strategies to improve the performance of lithium–sulfur (Li–S) batteries. Here in this study, the reaction mechanisms during the delithiation of nanoconfined Li2S as an active material, represented by a Li20S10 cluster, are examined by first-principles based calculations and analysis. Local reduction and disproportionation reactions can be observed although the overall delithiation process is an oxidation reaction. Long-chain polysulfides can form as intermediate products; however they may bind to insoluble S2-via Li atoms as mediators. Activating the charging process only requires an overpotential of 0.37 V if using Li20S10 as the active material. Sulfur allotropes longer than cyclo-S8 are observed at the end of the charge process. Although the discharge voltage of Li20S10 is only 1.27 V, it can still deliver an appreciable theoretical energy density of 1480 W h kg-1. This study also suggests that hole polarons, in Li20S10 and intermediate products, can serve as carriers to facilitate charge transport. This work provides new insights toward revealing the detailed reaction mechanisms of nanoconfined Li2S as an active material in the Li–S battery cathode.

Authors:
 [1];  [2];  [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [4];  [5]
  1. Hunan Univ., Changsha (China). College of Materials Science and Engineering
  2. Hunan Univ., Changsha (China). College of Materials Science and Engineering, and School of Physics and Electronics
  3. Hunan Univ., Changsha (China). College of Materials Science and Engineering; Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Science
  4. Texas A & M Univ., College Station, TX (United States)
  5. Purdue Univ., West Lafayette, IN (United States). School of Mechanical Engineering
Publication Date:
Research Org.:
Texas A&M Univ., College Station, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1460762
Alternate Identifier(s):
OSTI ID: 1434225
Grant/Contract Number:  
EE0008210; EE0006832; 51771073; 51772089
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 20; Journal Issue: 17; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium-sulfur battery; density functional theory; charge reactions

Citation Formats

Liu, Zhixiao, Deng, Huiqiu, Hu, Wangyu, Gao, Fei, Zhang, Shiguo, Balbuena, Perla B., and Mukherjee, Partha P. Revealing reaction mechanisms of nanoconfined Li 2 S: implications for lithium–sulfur batteries. United States: N. p., 2018. Web. doi:10.1039/C8CP01462K.
Liu, Zhixiao, Deng, Huiqiu, Hu, Wangyu, Gao, Fei, Zhang, Shiguo, Balbuena, Perla B., & Mukherjee, Partha P. Revealing reaction mechanisms of nanoconfined Li 2 S: implications for lithium–sulfur batteries. United States. doi:10.1039/C8CP01462K.
Liu, Zhixiao, Deng, Huiqiu, Hu, Wangyu, Gao, Fei, Zhang, Shiguo, Balbuena, Perla B., and Mukherjee, Partha P. Wed . "Revealing reaction mechanisms of nanoconfined Li 2 S: implications for lithium–sulfur batteries". United States. doi:10.1039/C8CP01462K. https://www.osti.gov/servlets/purl/1460762.
@article{osti_1460762,
title = {Revealing reaction mechanisms of nanoconfined Li 2 S: implications for lithium–sulfur batteries},
author = {Liu, Zhixiao and Deng, Huiqiu and Hu, Wangyu and Gao, Fei and Zhang, Shiguo and Balbuena, Perla B. and Mukherjee, Partha P.},
abstractNote = {Using Li2S as an active material and designing nanostructured cathode hosts are considered as promising strategies to improve the performance of lithium–sulfur (Li–S) batteries. Here in this study, the reaction mechanisms during the delithiation of nanoconfined Li2S as an active material, represented by a Li20S10 cluster, are examined by first-principles based calculations and analysis. Local reduction and disproportionation reactions can be observed although the overall delithiation process is an oxidation reaction. Long-chain polysulfides can form as intermediate products; however they may bind to insoluble S2-via Li atoms as mediators. Activating the charging process only requires an overpotential of 0.37 V if using Li20S10 as the active material. Sulfur allotropes longer than cyclo-S8 are observed at the end of the charge process. Although the discharge voltage of Li20S10 is only 1.27 V, it can still deliver an appreciable theoretical energy density of 1480 W h kg-1. This study also suggests that hole polarons, in Li20S10 and intermediate products, can serve as carriers to facilitate charge transport. This work provides new insights toward revealing the detailed reaction mechanisms of nanoconfined Li2S as an active material in the Li–S battery cathode.},
doi = {10.1039/C8CP01462K},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 17,
volume = 20,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Molecular structure and stability of dissolved lithium polysulfide species
journal, January 2014

  • Vijayakumar, M.; Govind, Niranjan; Walter, Eric
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 22
  • DOI: 10.1039/C4CP00889H

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Progress in Mechanistic Understanding and Characterization Techniques of Li-S Batteries
journal, May 2015


A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries
journal, January 2013


Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations
journal, August 2011

  • Hautier, Geoffroy; Jain, Anubhav; Ong, Shyue Ping
  • Chemistry of Materials, Vol. 23, Issue 15
  • DOI: 10.1021/cm200949v

Projector augmented-wave method
journal, December 1994


Mesoscale Elucidation of Surface Passivation in the Li–Sulfur Battery Cathode
journal, February 2017

  • Liu, Zhixiao; Mukherjee, Partha P.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 6
  • DOI: 10.1021/acsami.6b15066

Unveiling the charge migration mechanism in Na 2 O 2 : implications for sodium–air batteries
journal, January 2015

  • Araujo, Rafael B.; Chakraborty, Sudip; Ahuja, Rajeev
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 12
  • DOI: 10.1039/C4CP05042H

Enhanced Charge Transport in Amorphous Li 2 O 2
journal, April 2014

  • Tian, Feng; Radin, Maxwell D.; Siegel, Donald J.
  • Chemistry of Materials, Vol. 26, Issue 9
  • DOI: 10.1021/cm5007372

Poromechanical effect in the lithium–sulfur battery cathode
journal, December 2016


Carbon–sulfur composites for Li–S batteries: status and prospects
journal, January 2013

  • Wang, Da-Wei; Zeng, Qingcong; Zhou, Guangmin
  • Journal of Materials Chemistry A, Vol. 1, Issue 33
  • DOI: 10.1039/c3ta11045a

Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium–Sulfur Batteries
journal, May 2015


Crystal structure prediction via particle-swarm optimization
journal, September 2010


The density functional formalism, its applications and prospects
journal, July 1989


Mapping polaronic states and lithiation gradients in individual V2O5 nanowires
journal, June 2016

  • De Jesus, Luis R.; Horrocks, Gregory A.; Liang, Yufeng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12022

Chemistry of Sputter-Deposited Lithium Sulfide Films
journal, July 2017

  • Klein, Michael J.; Veith, Gabriel M.; Manthiram, Arumugam
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b03379

Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries
journal, October 2012

  • Xin, Sen; Gu, Lin; Zhao, Na-Hong
  • Journal of the American Chemical Society, Vol. 134, Issue 45
  • DOI: 10.1021/ja308170k

Stacking Principle and Magic Sizes of Transition Metal Nanoclusters Based on Generalized Wulff Construction
journal, September 2013


Probing the Lithium–Sulfur Redox Reactions: A Rotating-Ring Disk Electrode Study
journal, March 2014

  • Lu, Yi-Chun; He, Qi; Gasteiger, Hubert A.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11
  • DOI: 10.1021/jp500382s

Unified Approach for Molecular Dynamics and Density-Functional Theory
journal, November 1985


DFT+U Study of Polaronic Conduction in Li 2 O 2 and Li 2 CO 3 : Implications for Li–Air Batteries
journal, March 2013

  • Garcia-Lastra, J. M.; Myrdal, J. S. G.; Christensen, R.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 11
  • DOI: 10.1021/jp3107809

Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes
journal, September 2016


Projector Augmented Wave Method Incorporated into Gauss-Type Atomic Orbital Based Density Functional Theory
journal, June 2017

  • Xiong, Xiao-Gen; Yanai, Takeshi
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 7
  • DOI: 10.1021/acs.jctc.7b00404

A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

B 38 : an all-boron fullerene analogue
journal, January 2014


Vapor-Phase Atomic-Controllable Growth of Amorphous Li 2 S for High-Performance Lithium–Sulfur Batteries
journal, October 2014

  • Meng, Xiangbo; Comstock, David J.; Fister, Timothy T.
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn505480w

Toward a Molecular Understanding of Energetics in Li–S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study
journal, May 2014

  • Assary, Rajeev S.; Curtiss, Larry A.; Moore, Jeffrey S.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 22
  • DOI: 10.1021/jp5015466

Hole Polaron Diffusion in the Final Discharge Product of Lithium–Sulfur Batteries
journal, August 2017

  • Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 32
  • DOI: 10.1021/acs.jpcc.7b06869

Revealing Charge Transport Mechanisms in Li 2 S 2 for Li–Sulfur Batteries
journal, March 2017

  • Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 7
  • DOI: 10.1021/acs.jpclett.6b03063

First-principles study of transition metal doped Li2S as cathode materials in lithium batteries
journal, November 2012

  • Luo, Gaixia; Zhao, Jijun; Wang, Baolin
  • Journal of Renewable and Sustainable Energy, Vol. 4, Issue 6
  • DOI: 10.1063/1.4768814

Accurate and efficient algorithm for Bader charge integration
journal, February 2011

  • Yu, Min; Trinkle, Dallas R.
  • The Journal of Chemical Physics, Vol. 134, Issue 6
  • DOI: 10.1063/1.3553716

Experimental and Theoretical Analysis of Products and Reaction Intermediates of Lithium–Sulfur Batteries
journal, May 2014

  • Cañas, Natalia A.; Fronczek, David N.; Wagner, Norbert
  • The Journal of Physical Chemistry C, Vol. 118, Issue 23
  • DOI: 10.1021/jp5013208

Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li–S Batteries
journal, September 2015

  • Al Salem, Hesham; Babu, Ganguli; V. Rao, Chitturi
  • Journal of the American Chemical Society, Vol. 137, Issue 36
  • DOI: 10.1021/jacs.5b04472

Intrinsic Conductivity in Sodium–Air Battery Discharge Phases: Sodium Superoxide vs Sodium Peroxide
journal, May 2015


Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects
journal, November 2013

  • Yin, Ya-Xia; Xin, Sen; Guo, Yu-Guo
  • Angewandte Chemie International Edition, Vol. 52, Issue 50
  • DOI: 10.1002/anie.201304762

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Adsorption of insoluble polysulfides Li 2 S x (x = 1, 2) on Li 2 S surfaces
journal, January 2015

  • Liu, Zhixiao; Hubble, Dion; Balbuena, Perla B.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 14
  • DOI: 10.1039/C4CP06118G

Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries
journal, April 2015

  • Son, Yoonkook; Lee, Jung-Soo; Son, Yeonguk
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500110

Low hole polaron migration barrier in lithium peroxide
journal, February 2012


First-Principles Study of the Charge Transport Mechanisms in Lithium Superoxide
journal, February 2017


Ab initio molecular dynamics for open-shell transition metals
journal, November 1993


Ultrasmall Li2S Nanoparticles Anchored in Graphene Nanosheets for High-Energy Lithium-Ion Batteries
journal, September 2014

  • Zhang, Kai; Wang, Lijiang; Hu, Zhe
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06467

Review—From Nano Size Effect to In Situ Wrapping: Rational Design of Cathode Structure for High Performance Lithium−Sulfur Batteries
journal, June 2017

  • Chen, Hongwei; Shen, Yanbin; Wang, Changhong
  • Journal of The Electrochemical Society, Vol. 165, Issue 1
  • DOI: 10.1149/2.0081801jes

From Hollow Carbon Spheres to N-Doped Hollow Porous Carbon Bowls: Rational Design of Hollow Carbon Host for Li-S Batteries
journal, February 2016


Investigation of intrinsic defects in core-shell structured ZnO nanocrystals
journal, June 2012

  • Parashar, S. K. S.; Murty, B. S.; Repp, S.
  • Journal of Applied Physics, Vol. 111, Issue 11
  • DOI: 10.1063/1.4725478

Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis
journal, December 2016

  • Babu, Ganguli; Masurkar, Nirul; Al Salem, Hesham
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b08681

Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

Amorphous Li 2 O 2 : Chemical Synthesis and Electrochemical Properties
journal, August 2016

  • Zhang, Yelong; Cui, Qinghua; Zhang, Xinmin
  • Angewandte Chemie International Edition, Vol. 55, Issue 36
  • DOI: 10.1002/anie.201605228

High-Capacity Micrometer-Sized Li2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries
journal, September 2012

  • Yang, Yuan; Zheng, Guangyuan; Misra, Sumohan
  • Journal of the American Chemical Society, Vol. 134, Issue 37, p. 15387-15394
  • DOI: 10.1021/ja3052206

Understanding the role of lithium sulfide clusters in lithium–sulfur batteries
journal, January 2017

  • Yu, Tong; Li, Fei; Liu, Chunyu
  • Journal of Materials Chemistry A, Vol. 5, Issue 19
  • DOI: 10.1039/C7TA01006K

First-principles Study on the Charge Transport Mechanism of Lithium Sulfide (Li 2 S) in Lithium-Sulfur Batteries
journal, March 2016

  • Kim, B. S. Do-Hoon; Lee, M. S. Byungju; Park, Kyu-Young
  • Chemistry - An Asian Journal, Vol. 11, Issue 8
  • DOI: 10.1002/asia.201600007

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries
journal, May 2016


Evaluating silicene as a potential cathode host to immobilize polysulfides in lithium–sulfur batteries
journal, May 2016

  • Liu, Zhixiao; Balbuena, Perla B.; Mukherjee, Partha P.
  • Journal of Coordination Chemistry, Vol. 69, Issue 11-13
  • DOI: 10.1080/00958972.2016.1184265

How Dopants Can Enhance Charge Transport in Li 2 O 2
journal, January 2015

  • Radin, Maxwell D.; Monroe, Charles W.; Siegel, Donald J.
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm503874c