DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources

Abstract

The Curiosity rover has analyzed various detrital sedimentary rocks at Gale Crater, among which fluvial and lacustrine rocks are predominant. Conglomerates correspond both to the coarsest sediments analyzed and the least modified by chemical alteration, enabling us to link their chemistry to that of source rocks on the Gale Crater rims. Here, we report the results of six conglomerate targets analyzed by Alpha-Particle X-ray Spectrometer and 40 analyzed by ChemCam. The bulk chemistry derived by both instruments suggests two distinct end-members for the conglomerate compositions. The first group (Darwin type) is typical of conglomerates analyzed before sol 540; it has a felsic alkali-rich composition, with a Na2O/K2O > 5. The second group (Kimberley type) is typical of conglomerates analyzed between sols 540 and 670 in the vicinity of the Kimberley waypoint; it has an alkali-rich potassic composition with Na2O/K2O < 2. The variety of chemistry and igneous textures (when identifiable) of individual clasts suggest that each conglomerate type is a mixture of multiple source rocks. Conglomerate compositions are in agreement with most of the felsic alkali-rich float rock compositions analyzed in the hummocky plains. The average composition of conglomerates can be taken as a proxy of the average igneous crustmore » composition at Gale Crater. Finally, the differences between the composition of conglomerates and that of finer-grained detrital sediments analyzed by the rover suggest modifications by diagenetic processes (especially for Mg enrichments in fine-grained rocks), physical sorting, and mixing with finer-grained material of different composition.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [1]; ORCiD logo [6];  [7];  [8];  [9];  [9];  [3]; ORCiD logo [6];  [10];  [11];  [12];  [13];  [3];  [14];  [15] more »;  [16];  [1];  [17];  [3];  [3];  [18];  [11];  [3];  [19];  [15];  [9];  [20];  [21] « less
  1. Univ. of Nantes (France). National Centre for Scientific Research (CNRS), Lab. of Planetology and Geodynamics
  2. Univ. of New Brunswick, Fredericton NB (Canada). Planetary and Space Science Centre, Dept. of Earth Sciences
  3. Univ. of Toulouse (France). National Centre for Scientific Research (CNRS). Inst. for Research in Astrophysics and Planetology
  4. Towson Univ., MD (United States). Dept. of Physics, Astronomy, and Geosciences
  5. Univ. of Lorraine, Nancy (France). GeoRessources
  6. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  7. Planetary Science Inst., Tucson Arizona (United States)
  8. U.S. Geological Survey, Flagstaff, AZ (United States)
  9. California Inst. of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab.
  10. Univ. of Lyon (France). Lyon Geology Lab.
  11. Univ. of California, Berkeley, CA (United States). Dept. of Earth and Planetary Science
  12. Malin Space Science Systems, San Diego, CA (United States)
  13. Oregon State Univ., Corvallis, OR (United States). Colege of Earth, Ocean and Atmospheric Sciences
  14. Univ. of Guelph, ON (Canada). Dept. of Physics
  15. California Inst. of Technology (CalTech), Pasadena, CA (United States). Division of Geological and Planetary Sciences
  16. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Earth and Planetary Sciences
  17. State Univ. of New York (SUNY), Stony Brook, NY (United States). Dept. of Geosciences
  18. Inst. of Meteoritics, Albuquerque, NM (United States). Dept. of Earth and Planetary Sciences
  19. Museum National d'Histoire Naturelle de Paris, (France). Inst. of Mineralogy, Materials Physics and Cosmochemistry
  20. Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences
  21. Planetary Science Inst., Tucson, AZ (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
National Aeronautics and Space Administration (NASA)
OSTI Identifier:
1417818
Report Number(s):
LA-UR-17-27711
Journal ID: ISSN 2169-9097
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Planets
Additional Journal Information:
Journal Volume: 121; Journal Issue: 3; Journal ID: ISSN 2169-9097
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Planetary Sciences

Citation Formats

Mangold, N., Thompson, L. M., Forni, O., Williams, A. J., Fabre, C., Le Deit, L., Wiens, R. C., Williams, R., Anderson, R. B., Blaney, D. L., Calef, F., Cousin, A., Clegg, S. M., Dromart, G., Dietrich, W. E., Edgett, K. S., Fisk, M. R., Gasnault, O., Gellert, R., Grotzinger, J. P., Kah, L., Le Mouélic, S., McLennan, S. M., Maurice, S., Meslin, P. -Y., Newsom, H. E., Palucis, M. C., Rapin, W., Sautter, V., Siebach, K. L., Stack, K., Sumner, D., and Yingst, A. Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources. United States: N. p., 2016. Web. doi:10.1002/2015JE004977.
Mangold, N., Thompson, L. M., Forni, O., Williams, A. J., Fabre, C., Le Deit, L., Wiens, R. C., Williams, R., Anderson, R. B., Blaney, D. L., Calef, F., Cousin, A., Clegg, S. M., Dromart, G., Dietrich, W. E., Edgett, K. S., Fisk, M. R., Gasnault, O., Gellert, R., Grotzinger, J. P., Kah, L., Le Mouélic, S., McLennan, S. M., Maurice, S., Meslin, P. -Y., Newsom, H. E., Palucis, M. C., Rapin, W., Sautter, V., Siebach, K. L., Stack, K., Sumner, D., & Yingst, A. Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources. United States. https://doi.org/10.1002/2015JE004977
Mangold, N., Thompson, L. M., Forni, O., Williams, A. J., Fabre, C., Le Deit, L., Wiens, R. C., Williams, R., Anderson, R. B., Blaney, D. L., Calef, F., Cousin, A., Clegg, S. M., Dromart, G., Dietrich, W. E., Edgett, K. S., Fisk, M. R., Gasnault, O., Gellert, R., Grotzinger, J. P., Kah, L., Le Mouélic, S., McLennan, S. M., Maurice, S., Meslin, P. -Y., Newsom, H. E., Palucis, M. C., Rapin, W., Sautter, V., Siebach, K. L., Stack, K., Sumner, D., and Yingst, A. Wed . "Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources". United States. https://doi.org/10.1002/2015JE004977. https://www.osti.gov/servlets/purl/1417818.
@article{osti_1417818,
title = {Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources},
author = {Mangold, N. and Thompson, L. M. and Forni, O. and Williams, A. J. and Fabre, C. and Le Deit, L. and Wiens, R. C. and Williams, R. and Anderson, R. B. and Blaney, D. L. and Calef, F. and Cousin, A. and Clegg, S. M. and Dromart, G. and Dietrich, W. E. and Edgett, K. S. and Fisk, M. R. and Gasnault, O. and Gellert, R. and Grotzinger, J. P. and Kah, L. and Le Mouélic, S. and McLennan, S. M. and Maurice, S. and Meslin, P. -Y. and Newsom, H. E. and Palucis, M. C. and Rapin, W. and Sautter, V. and Siebach, K. L. and Stack, K. and Sumner, D. and Yingst, A.},
abstractNote = {The Curiosity rover has analyzed various detrital sedimentary rocks at Gale Crater, among which fluvial and lacustrine rocks are predominant. Conglomerates correspond both to the coarsest sediments analyzed and the least modified by chemical alteration, enabling us to link their chemistry to that of source rocks on the Gale Crater rims. Here, we report the results of six conglomerate targets analyzed by Alpha-Particle X-ray Spectrometer and 40 analyzed by ChemCam. The bulk chemistry derived by both instruments suggests two distinct end-members for the conglomerate compositions. The first group (Darwin type) is typical of conglomerates analyzed before sol 540; it has a felsic alkali-rich composition, with a Na2O/K2O > 5. The second group (Kimberley type) is typical of conglomerates analyzed between sols 540 and 670 in the vicinity of the Kimberley waypoint; it has an alkali-rich potassic composition with Na2O/K2O < 2. The variety of chemistry and igneous textures (when identifiable) of individual clasts suggest that each conglomerate type is a mixture of multiple source rocks. Conglomerate compositions are in agreement with most of the felsic alkali-rich float rock compositions analyzed in the hummocky plains. The average composition of conglomerates can be taken as a proxy of the average igneous crust composition at Gale Crater. Finally, the differences between the composition of conglomerates and that of finer-grained detrital sediments analyzed by the rover suggest modifications by diagenetic processes (especially for Mg enrichments in fine-grained rocks), physical sorting, and mixing with finer-grained material of different composition.},
doi = {10.1002/2015JE004977},
journal = {Journal of Geophysical Research. Planets},
number = 3,
volume = 121,
place = {United States},
year = {Wed Mar 16 00:00:00 EDT 2016},
month = {Wed Mar 16 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 51 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Implications of upper Mesozoic conglomerate for suspect terrane in western California and adjacent areas
journal, March 1988


ChemCam results from the Shaler outcrop in Gale crater, Mars
journal, March 2015


Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity 's ChemCam: Early results for Gale crater from Bradbury Landing Site to Rocknest : TRACE ELEMENT RESULTS FOR GALE CRATER
journal, January 2014

  • Ollila, Ann M.; Newsom, Horton E.; Clark, Benton
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 1
  • DOI: 10.1002/2013JE004517

Segregation of olivine grains in volcanic sands in Iceland and implications for Mars
journal, October 2011


Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: Implications for interpreting martian soils
journal, August 2015

  • Fedo, Christopher M.; McGlynn, Ian O.; McSween, Harry Y.
  • Earth and Planetary Science Letters, Vol. 423
  • DOI: 10.1016/j.epsl.2015.03.052

Distribution, composition, and source of the White River Ash, Yukon Territory
journal, February 1969

  • Lerbekmo, J. F.; Campbell, F. A.
  • Canadian Journal of Earth Sciences, Vol. 6, Issue 1
  • DOI: 10.1139/e69-011

Identification of quartzofeldspathic materials on Mars
journal, January 2004

  • Bandfield, Joshua L.
  • Journal of Geophysical Research, Vol. 109, Issue E10
  • DOI: 10.1029/2004JE002290

Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars
journal, January 2006

  • McSween, H. Y.; Ruff, S. W.; Morris, R. V.
  • Journal of Geophysical Research, Vol. 111, Issue E9
  • DOI: 10.1029/2006JE002698

Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater: IGNEOUS MINERALOGY AT BRADBURY RISE
journal, January 2014

  • Sautter, V.; Fabre, C.; Forni, O.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 1
  • DOI: 10.1002/2013JE004472

Petrography and composition of Martian regolith breccia meteorite Northwest Africa 7475
journal, February 2015

  • Wittmann, Axel; Korotev, Randy L.; Jolliff, Bradley L.
  • Meteoritics & Planetary Science, Vol. 50, Issue 2
  • DOI: 10.1111/maps.12425

Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars
journal, December 2013


A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars
journal, December 2013


Hydrogen detection with ChemCam at Gale crater
journal, March 2015


Characteristics of pebble- and cobble-sized clasts along the Curiosity rover traverse from Bradbury Landing to Rocknest: CLASTS FROM BRADBURY TO ROCKNEST
journal, November 2013

  • Yingst, R. A.; Kah, L. C.; Palucis, M.
  • Journal of Geophysical Research: Planets, Vol. 118, Issue 11
  • DOI: 10.1002/2013JE004435

Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars
journal, September 2013


Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars
journal, December 2013


Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data
journal, May 2009


Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover
journal, April 2013

  • Wiens, R. C.; Maurice, S.; Lasue, J.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 82
  • DOI: 10.1016/j.sab.2013.02.003

Origin and age of the earliest Martian crust from meteorite NWA 7533
journal, November 2013


Observation of > 5 wt % zinc at the Kimberley outcrop, Gale crater, Mars: ZN DETECTION AT KIMBERLEY WITH CHEMCAM
journal, March 2016

  • Lasue, J.; Clegg, S. M.; Forni, O.
  • Journal of Geophysical Research: Planets, Vol. 121, Issue 3
  • DOI: 10.1002/2015JE004946

Independent component analysis, A new concept?
journal, April 1994


Mapping Mars geochemically
journal, February 2010

  • Taylor, G. Jeffrey; Martel, Linda M. V.; Karunatillake, Suniti
  • Geology, Vol. 38, Issue 2
  • DOI: 10.1130/G30470.1

NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

The ChemCam Remote Micro-Imager at Gale crater: Review of the first year of operations on Mars
journal, March 2015


Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx: OMEGA/MEX MINERALOGICAL MAPS OF MARS
journal, September 2012

  • Ody, A.; Poulet, F.; Langevin, Y.
  • Journal of Geophysical Research: Planets, Vol. 117, Issue E11
  • DOI: 10.1029/2012JE004117

The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, Gale Crater, Mars : Origin and evolution of Peace Vallis fan
journal, April 2014

  • Palucis, Marisa C.; Dietrich, William E.; Hayes, Alexander G.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 4
  • DOI: 10.1002/2013JE004583

Petrological constraints on the density of the Martian crust
journal, July 2014

  • Baratoux, David; Samuel, Henri; Michaut, Chloé
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 7
  • DOI: 10.1002/2014JE004642

In situ evidence for continental crust on early Mars
journal, July 2015

  • Sautter, V.; Toplis, M. J.; Wiens, R. C.
  • Nature Geoscience, Vol. 8, Issue 8
  • DOI: 10.1038/ngeo2474

Evidence for magmatic evolution and diversity on Mars from infrared observations
journal, August 2005

  • Christensen, P. R.; McSween, H. Y.; Bandfield, J. L.
  • Nature, Vol. 436, Issue 7052
  • DOI: 10.1038/nature04075

Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars
journal, October 2015


Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars
journal, March 2015

  • Mangold, N.; Forni, O.; Dromart, G.
  • Journal of Geophysical Research: Planets, Vol. 120, Issue 3
  • DOI: 10.1002/2014JE004681

Constraints on abundance, composition, and nature of X-ray amorphous components of soils and rocks at Gale crater, Mars: X-ray amorphous components at Gale
journal, December 2014

  • Dehouck, Erwin; McLennan, Scott M.; Meslin, Pierre-Yves
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 12
  • DOI: 10.1002/2014JE004716

Reconstructing the transport history of pebbles on Mars
journal, October 2015

  • Szabó, Tímea; Domokos, Gábor; Grotzinger, John P.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9366

Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer
journal, April 2012

  • Campbell, John L.; Perrett, Glynis M.; Gellert, Ralf
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9873-5

Geochemical and NdSr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations
journal, July 1990


Olivine and Pyroxene Diversity in the Crust of Mars
journal, March 2005


Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034
journal, January 2013


Elemental Composition of the Martian Crust
journal, May 2009


Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater): CHEMIN: WINDJANA
journal, January 2016

  • Treiman, Allan H.; Bish, David L.; Vaniman, David T.
  • Journal of Geophysical Research: Planets, Vol. 121, Issue 1
  • DOI: 10.1002/2015JE004932

Evidence for extensive, olivine-rich bedrock on Mars
journal, January 2005

  • Hamilton, Victoria E.; Christensen, Philip R.
  • Geology, Vol. 33, Issue 6
  • DOI: 10.1130/G21258.1

Constraints on the composition and petrogenesis of the Martian crust: MARTIAN CRUST COMPOSITION AND PETROGENESIS
journal, December 2003

  • McSween, Harry Y.; Grove, Timothy L.; Wyatt, Michael B.
  • Journal of Geophysical Research: Planets, Vol. 108, Issue E12
  • DOI: 10.1029/2003JE002175

A Scale of Grade and Class Terms for Clastic Sediments
journal, July 1922

  • Wentworth, Chester K.
  • The Journal of Geology, Vol. 30, Issue 5
  • DOI: 10.1086/622910

Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation
journal, July 2012

  • Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9910-4

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description
journal, July 2012


Morphology and texture of particles along the Spirit rover traverse from sol 450 to sol 745
journal, January 2008

  • Yingst, R. A.; Crumpler, L.; Farrand, W. H.
  • Journal of Geophysical Research, Vol. 113, Issue E12
  • DOI: 10.1029/2008JE003179

Mineralogy of recent volcanic plains in the Tharsis region, Mars, and implications for platy-ridged flow composition
journal, June 2010


The geochemical evolution of the continental crust
journal, January 1995

  • Taylor, Stuart Ross; McLennan, Scott M.
  • Reviews of Geophysics, Vol. 33, Issue 2
  • DOI: 10.1029/95RG00262

In situ calibration using univariate analyses based on the onboard ChemCam targets: first prediction of Martian rock and soil compositions
journal, September 2014

  • Fabre, C.; Cousin, A.; Wiens, R. C.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 99
  • DOI: 10.1016/j.sab.2014.03.014

Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry
journal, July 1983

  • Cremers, David A.; Radziemski, Leon J.
  • Analytical Chemistry, Vol. 55, Issue 8
  • DOI: 10.1021/ac00259a017

Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains
journal, November 2013

  • Carter, J.; Poulet, F.
  • Nature Geoscience, Vol. 6, Issue 12
  • DOI: 10.1038/ngeo1995

Prolonged magmatic activity on Mars inferred from the detection of felsic rocks
journal, November 2013

  • Wray, James J.; Hansen, Sarah T.; Dufek, Josef
  • Nature Geoscience, Vol. 6, Issue 12
  • DOI: 10.1038/ngeo1994

Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: an experimental study
journal, May 1975


Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques
journal, January 2009

  • Clegg, Samuel M.; Sklute, Elizabeth; Dyar, M. Darby
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 64, Issue 1
  • DOI: 10.1016/j.sab.2008.10.045

The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests
journal, June 2012

  • Wiens, Roger C.; Maurice, Sylvestre; Barraclough, Bruce
  • Space Science Reviews, Vol. 170, Issue 1-4
  • DOI: 10.1007/s11214-012-9902-4

Testing the veracity of LIBS analyses on Mars using the LIBSSIM program
journal, June 2013


The Petrochemistry of Jake_M: A Martian Mugearite
journal, September 2013


Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond: MARS SCIENCE LABORATORY MISSION OVERVIEW
journal, June 2014

  • Vasavada, A. R.; Grotzinger, J. P.; Arvidson, R. E.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 6
  • DOI: 10.1002/2014JE004622

First detection of fluorine on Mars: Implications for Gale Crater's geochemistry: First detection of fluorine on Mars
journal, February 2015

  • Forni, Olivier; Gaft, Michael; Toplis, Michael J.
  • Geophysical Research Letters, Vol. 42, Issue 4
  • DOI: 10.1002/2014GL062742

Martian Fluvial Conglomerates at Gale Crater
journal, May 2013

  • Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.
  • Science, Vol. 340, Issue 6136
  • DOI: 10.1126/science.1237317

Possible formation of ancient crust on Mars through magma ocean processes
journal, January 2005

  • Elkins-Tanton, Linda T.
  • Journal of Geophysical Research, Vol. 110, Issue E12
  • DOI: 10.1029/2005JE002480

Chemistry of fracture-filling raised ridges in Yellowknife Bay, Gale Crater: Window into past aqueous activity and habitability on Mars: Chemistry of raised ridges, Gale Crater
journal, November 2014

  • Léveillé, Richard J.; Bridges, John; Wiens, Roger C.
  • Journal of Geophysical Research: Planets, Vol. 119, Issue 11
  • DOI: 10.1002/2014JE004620

The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board Curiosity : Potassic Sedimentary Rocks, Gale Crater
journal, May 2016

  • Le Deit, L.; Mangold, N.; Forni, O.
  • Journal of Geophysical Research: Planets, Vol. 121, Issue 5
  • DOI: 10.1002/2015JE004987

Works referencing / citing this record:

Autonomous Martian rock image classification based on transfer deep learning methods
journal, January 2020


New Constraints on Early Mars Weathering Conditions From an Experimental Approach on Crust Simulants
journal, July 2019

  • Baron, F.; Gaudin, A.; Lorand, J. ‐P.
  • Journal of Geophysical Research: Planets, Vol. 124, Issue 7
  • DOI: 10.1029/2019je005920

Evidence for plunging river plume deposits in the Pahrump Hills member of the Murray formation, Gale crater, Mars
journal, February 2019

  • Stack, Kathryn M.; Grotzinger, John P.; Lamb, Michael P.
  • Sedimentology, Vol. 66, Issue 5
  • DOI: 10.1111/sed.12558