DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

Abstract

The lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg-1). However, low Coulombic efficiency (CE) during repeated Li metal plating/stripping has severely limited the practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on a high concentration of LiNO3 in diglyme (G2) solvent is developed which enables an exceptionally high CE for Li metal plating/stripping and thus high stability of the Li anode in the sulfur-containing electrolyte. The tailoring of electrolyte properties for the Li anode has proven to be a highly successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE of greater than 99% for over 200 cycles of Li plating/stripping. In contrast, the Li anode cycles for less than 35 cycles (with a high CE) in the state-of-the-art 1 M LiTFSI + 0.3 M LiNO3 in 1,3-dioxolane:1,2-dimethoxyethane (DOL:DME) electrolyte under the same conditions. Lastly, the stable Li anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electricalmore » vehicles and large-scale grid energy storage markets.« less

Authors:
 [1];  [2];  [2];  [3];  [1];  [1];  [4];  [4];  [3];  [4];  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Joint Center for Energy Storage Research (JCESR); Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy & Environment Directorate
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR); Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Joint Center for Energy Storage Research (JCESR); Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical & Computer Sciences Directorate
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy & Environment Directorate
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1395291
Alternate Identifier(s):
OSTI ID: 1549956
Report Number(s):
PNNL-SA-124786
Journal ID: ISSN 2211-2855; PII: S2211285517305530
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 40; Journal Issue: C; Journal ID: ISSN 2211-2855
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; Li-S battery; Lithium nitrate; Coulombic efficiency; Cycling stability; Lithium metal

Citation Formats

Adams, Brian D., Carino, Emily V., Connell, Justin G., Han, Kee Sung, Cao, Ruiguo, Chen, Junzheng, Zheng, Jianming, Li, Qiuyan, Mueller, Karl T., Henderson, Wesley A., and Zhang, Ji-Guang. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes. United States: N. p., 2017. Web. doi:10.1016/J.NANOEN.2017.09.015.
Adams, Brian D., Carino, Emily V., Connell, Justin G., Han, Kee Sung, Cao, Ruiguo, Chen, Junzheng, Zheng, Jianming, Li, Qiuyan, Mueller, Karl T., Henderson, Wesley A., & Zhang, Ji-Guang. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes. United States. https://doi.org/10.1016/J.NANOEN.2017.09.015
Adams, Brian D., Carino, Emily V., Connell, Justin G., Han, Kee Sung, Cao, Ruiguo, Chen, Junzheng, Zheng, Jianming, Li, Qiuyan, Mueller, Karl T., Henderson, Wesley A., and Zhang, Ji-Guang. Fri . "Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes". United States. https://doi.org/10.1016/J.NANOEN.2017.09.015. https://www.osti.gov/servlets/purl/1395291.
@article{osti_1395291,
title = {Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes},
author = {Adams, Brian D. and Carino, Emily V. and Connell, Justin G. and Han, Kee Sung and Cao, Ruiguo and Chen, Junzheng and Zheng, Jianming and Li, Qiuyan and Mueller, Karl T. and Henderson, Wesley A. and Zhang, Ji-Guang},
abstractNote = {The lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg-1). However, low Coulombic efficiency (CE) during repeated Li metal plating/stripping has severely limited the practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on a high concentration of LiNO3 in diglyme (G2) solvent is developed which enables an exceptionally high CE for Li metal plating/stripping and thus high stability of the Li anode in the sulfur-containing electrolyte. The tailoring of electrolyte properties for the Li anode has proven to be a highly successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE of greater than 99% for over 200 cycles of Li plating/stripping. In contrast, the Li anode cycles for less than 35 cycles (with a high CE) in the state-of-the-art 1 M LiTFSI + 0.3 M LiNO3 in 1,3-dioxolane:1,2-dimethoxyethane (DOL:DME) electrolyte under the same conditions. Lastly, the stable Li anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.},
doi = {10.1016/J.NANOEN.2017.09.015},
journal = {Nano Energy},
number = C,
volume = 40,
place = {United States},
year = {Fri Sep 08 00:00:00 EDT 2017},
month = {Fri Sep 08 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 140 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection
journal, June 2015


Direct Measurement of Polysulfide Shuttle Current: A Window into Understanding the Performance of Lithium-Sulfur Cells
journal, November 2014

  • Moy, Derek; Manivannan, A.; Narayanan, S. R.
  • Journal of The Electrochemical Society, Vol. 162, Issue 1
  • DOI: 10.1149/2.0181501jes

Sparingly Solvating Electrolytes for High Energy Density Lithium–Sulfur Batteries
journal, August 2016


The Effect of Interactions and Reduction Products of LiNO 3 , the Anti-Shuttle Agent, in Li-S Battery Systems
journal, December 2014

  • Rosenman, Ariel; Elazari, Ran; Salitra, Gregory
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0861503jes

Following the Transient Reactions in Lithium–Sulfur Batteries Using an In Situ Nuclear Magnetic Resonance Technique
journal, April 2015


Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst
journal, September 2016

  • Ding, Ning; Zhou, Lan; Zhou, Changwei
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep33154

Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries
journal, August 2014

  • Pang, Quan; Kundu, Dipan; Cuisinier, Marine
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5759

Effect of the Anion Activity on the Stability of Li Metal Anodes in Lithium-Sulfur Batteries
journal, March 2016

  • Cao, Ruiguo; Chen, Junzheng; Han, Kee Sung
  • Advanced Functional Materials, Vol. 26, Issue 18
  • DOI: 10.1002/adfm.201505074

Low Temperature Performance of Li/S Batteries
journal, January 2003

  • Mikhaylik, Yuriy V.; Akridge, James R.
  • Journal of The Electrochemical Society, Vol. 150, Issue 3
  • DOI: 10.1149/1.1545452

Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte
journal, November 2011


The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries
journal, January 2016

  • Jozwiuk, Anna; Berkes, Balázs B.; Weiß, Thomas
  • Energy & Environmental Science, Vol. 9, Issue 8
  • DOI: 10.1039/C6EE00789A

Role of LiNO3 in rechargeable lithium/sulfur battery
journal, May 2012


A new finding on the role of LiNO3 in lithium-sulfur battery
journal, August 2016


On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Recent Developments of the Lithium Metal Anode for Rechargeable Non-Aqueous Batteries
journal, July 2016

  • Zhang, Kai; Lee, Gi-Hyeok; Park, Mihui
  • Advanced Energy Materials, Vol. 6, Issue 20
  • DOI: 10.1002/aenm.201600811

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


A lithium anode protection guided highly-stable lithium–sulfur battery
journal, January 2014

  • Ma, Guoqiang; Wen, Zhaoyin; Wu, Meifen
  • Chem. Commun., Vol. 50, Issue 91
  • DOI: 10.1039/C4CC05535G

Protected lithium anode with porous Al 2 O 3 layer for lithium–sulfur battery
journal, January 2015

  • Jing, Hang-Kun; Kong, Ling-Long; Liu, Sheng
  • Journal of Materials Chemistry A, Vol. 3, Issue 23
  • DOI: 10.1039/C5TA01490E

Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive
journal, July 2015


Nitrogen-doped diamond-like carbon as optically transparent electrode for infrared attenuated total reflection spectroelectrochemistry
journal, January 2011

  • Menegazzo, Nicola; Kahn, Markus; Berghauser, Roswitha
  • The Analyst, Vol. 136, Issue 9
  • DOI: 10.1039/c0an00503g

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Glyme−Lithium Salt Phase Behavior
journal, July 2006

  • Henderson, Wesley A.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 26
  • DOI: 10.1021/jp061516t

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Anode-Free Rechargeable Lithium Metal Batteries
journal, August 2016

  • Qian, Jiangfeng; Adams, Brian D.; Zheng, Jianming
  • Advanced Functional Materials, Vol. 26, Issue 39
  • DOI: 10.1002/adfm.201602353

Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014

  • Lu, Dongping; Shao, Yuyan; Lozano, Terence
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400993

High Field Multinuclear NMR Investigation of the SEI Layer in Lithium Rechargeable Batteries
journal, January 2005

  • Meyer, Benjamin M.; Leifer, Nicole; Sakamoto, Sarah
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 3
  • DOI: 10.1149/1.1854117

NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist
journal, May 2010

  • Fulmer, Gregory R.; Miller, Alexander J. M.; Sherden, Nathaniel H.
  • Organometallics, Vol. 29, Issue 9
  • DOI: 10.1021/om100106e

Effects of Electrolyte Salts on the Performance of Li–O 2 Batteries
journal, February 2013

  • Nasybulin, Eduard; Xu, Wu; Engelhard, Mark H.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 6
  • DOI: 10.1021/jp311114u

Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling
journal, May 2014

  • Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae
  • International Journal of Molecular Sciences, Vol. 15, Issue 5
  • DOI: 10.3390/ijms15058122

Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO 3 -Contained Electrolyte
journal, January 2012

  • Zhang, Sheng S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.002207jes

Catalytic Behavior of Lithium Nitrate in Li-O 2 Cells
journal, July 2015

  • Sharon, Daniel; Hirsberg, Daniel; Afri, Michal
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 30
  • DOI: 10.1021/acsami.5b04145

Synergistic Effect of Oxygen and LiNO 3 on the Interfacial Stability of Lithium Metal in a Li/O 2 Battery
journal, January 2013

  • Giordani, Vincent; Walker, Wesley; Bryantsev, Vyacheslav S.
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.097309jes

On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Li-S Redox Flow Batteries
journal, April 2015

  • Pan, Huilin; Wei, Xiaoliang; Henderson, Wesley A.
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500113

Enhanced Cyclability of Li/Polysulfide Batteries by a Polymer-Modified Carbon Paper Current Collector
journal, August 2015


A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee00072a

A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density
journal, August 2012


Works referencing / citing this record:

Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries
journal, August 2018


Insight into the effect of additives widely used in lithium–sulfur batteries
journal, January 2019

  • Duangdangchote, Salatan; Krittayavathananon, Atiweena; Phattharasupakun, Nutthaphon
  • Chemical Communications, Vol. 55, Issue 93
  • DOI: 10.1039/c9cc06504k

Stabilizing polymer electrolytes in high-voltage lithium batteries
journal, July 2019


A Comprehensive Understanding of Lithium–Sulfur Battery Technology
journal, June 2019

  • Li, Tao; Bai, Xue; Gulzar, Umair
  • Advanced Functional Materials, Vol. 29, Issue 32
  • DOI: 10.1002/adfm.201901730

A Sustainable Solid Electrolyte Interphase for High‐Energy‐Density Lithium Metal Batteries Under Practical Conditions
journal, January 2020


Self‐Formed Protection Layer on a 3D Lithium Metal Anode for Ultrastable Lithium–Sulfur Batteries
journal, April 2019


Constructing Universal Ionic Sieves via Alignment of Two‐Dimensional Covalent Organic Frameworks (COFs)
journal, October 2018


Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium–sulfur batteries
journal, July 2019


Constructing Universal Ionic Sieves via Alignment of Two‐Dimensional Covalent Organic Frameworks (COFs)
journal, December 2018

  • Jiang, Cheng; Tang, Mi; Zhu, Shaolong
  • Angewandte Chemie International Edition, Vol. 57, Issue 49
  • DOI: 10.1002/anie.201809907

A Sustainable Solid Electrolyte Interphase for High‐Energy‐Density Lithium Metal Batteries Under Practical Conditions
journal, February 2020

  • Zhang, Xue‐Qiang; Li, Tao; Li, Bo‐Quan
  • Angewandte Chemie International Edition, Vol. 59, Issue 8
  • DOI: 10.1002/anie.201911724

Electrolyte Concentration Effect on Sulfur Utilization of Li-S Batteries
journal, January 2019

  • Sun, Ke; Li, Na; Su, Dong
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.0161902jes

Development and Challenges of Functional Electrolytes for High-Performance Lithium-Sulfur Batteries
journal, July 2018

  • Wang, Lili; Ye, Yusheng; Chen, Nan
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201800919

How Far Away Are Lithium-Sulfur Batteries From Commercialization?
journal, November 2019


Formulierung von Elektrolyten mit gemischten Lithiumsalzen für Lithium‐Batterien
journal, December 2019

  • Xu, Gaojie; Shangguan, Xuehui; Dong, Shanmu
  • Angewandte Chemie, Vol. 132, Issue 9
  • DOI: 10.1002/ange.201906494

Formulation of Blended‐Lithium‐Salt Electrolytes for Lithium Batteries
journal, December 2019

  • Xu, Gaojie; Shangguan, Xuehui; Dong, Shanmu
  • Angewandte Chemie International Edition, Vol. 59, Issue 9
  • DOI: 10.1002/anie.201906494

A Concentrated Ternary‐Salts Electrolyte for High Reversible Li Metal Battery with Slight Excess Li
journal, December 2018


Tailored Reaction Route by Micropore Confinement for Li-S Batteries Operating under Lean Electrolyte Conditions
journal, May 2018

  • Wang, Hui; Adams, Brian D.; Pan, Huilin
  • Advanced Energy Materials, Vol. 8, Issue 21
  • DOI: 10.1002/aenm.201800590

Carbon-Metal Oxide Nanocomposites as Lithium-Sulfur Battery Cathodes
book, February 2021


Inside Back Cover: A Sustainable Solid Electrolyte Interphase for High‐Energy‐Density Lithium Metal Batteries Under Practical Conditions (Angew. Chem. Int. Ed. 8/2020)
journal, February 2020

  • Zhang, Xue‐Qiang; Li, Tao; Li, Bo‐Quan
  • Angewandte Chemie International Edition, Vol. 59, Issue 8
  • DOI: 10.1002/anie.202000869