DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries

Abstract

Lithium/sulfur (Li/S) batteries have attracted great attention as a promising energy storage technology, but so far their practical applications are greatly hindered by issues of polysulfide shuttling and unstable lithium/electrolyte interface. To address these issues, a feasible strategy is to construct a rechargeable prelithiated graphite/sulfur batteries. In this study, a fluorinated ether of bis(2,2,2-trifluoroethyl) ether (BTFE) was reported to blend with 1,3-dioxolane (DOL) for making a multifunctional electrolyte of 1.0 M LiTFSI DOL/BTFE (1:1, v/v) to enable high performance prelithiated graphite/S batteries. First, the electrolyte significantly reduces polysulfide solubility to suppress the deleterious polysulfide shuttling and thus improves capacity retention of sulfur cathodes. Second, thanks to the low viscosity and good wettability, the fluorinated electrolyte dramatically enhances the reaction kinetics and sulfur utilization of high-areal-loading sulfur cathodes. More importantly, this electrolyte forms a stable solid-electrolyte interphase (SEI) layer on graphite surface and thus enables remarkable cyclability of graphite anodes. Lastly, by coupling prelithiated graphite anodes with sulfur cathodes with high areal capacity of ~3 mAh cm-2, we demonstrate prelithiated graphite/sulfur batteries that show high sulfur-specific capacity of ~1000 mAh g-1 and an excellent capacity retention of >65% after 450 cycles at C/10.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Pennsylvania State Univ., University Park, PA (United States). Department of Mechanical and Nuclear Engineering
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1435968
Alternate Identifier(s):
OSTI ID: 1430247
Report Number(s):
DOE-PENNSTATE-0007795; DOE-PENN STATE-0007795
Journal ID: ISSN 1944-8244; PII:974; TRN: US1900117
Grant/Contract Number:  
EE0007795; EE0005475
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 9; Journal Issue: 8; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 42 ENGINEERING; batteries; fluorinated electrolytes; graphite; lithium/sulfur; prelithiated

Citation Formats

Chen, Shuru, Yu, Zhaoxin, Gordin, Mikhail L., Yi, Ran, Song, Jiangxuan, and Wang, Donghai. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries. United States: N. p., 2017. Web. doi:10.1021/acsami.6b11008.
Chen, Shuru, Yu, Zhaoxin, Gordin, Mikhail L., Yi, Ran, Song, Jiangxuan, & Wang, Donghai. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries. United States. https://doi.org/10.1021/acsami.6b11008
Chen, Shuru, Yu, Zhaoxin, Gordin, Mikhail L., Yi, Ran, Song, Jiangxuan, and Wang, Donghai. Fri . "A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries". United States. https://doi.org/10.1021/acsami.6b11008. https://www.osti.gov/servlets/purl/1435968.
@article{osti_1435968,
title = {A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries},
author = {Chen, Shuru and Yu, Zhaoxin and Gordin, Mikhail L. and Yi, Ran and Song, Jiangxuan and Wang, Donghai},
abstractNote = {Lithium/sulfur (Li/S) batteries have attracted great attention as a promising energy storage technology, but so far their practical applications are greatly hindered by issues of polysulfide shuttling and unstable lithium/electrolyte interface. To address these issues, a feasible strategy is to construct a rechargeable prelithiated graphite/sulfur batteries. In this study, a fluorinated ether of bis(2,2,2-trifluoroethyl) ether (BTFE) was reported to blend with 1,3-dioxolane (DOL) for making a multifunctional electrolyte of 1.0 M LiTFSI DOL/BTFE (1:1, v/v) to enable high performance prelithiated graphite/S batteries. First, the electrolyte significantly reduces polysulfide solubility to suppress the deleterious polysulfide shuttling and thus improves capacity retention of sulfur cathodes. Second, thanks to the low viscosity and good wettability, the fluorinated electrolyte dramatically enhances the reaction kinetics and sulfur utilization of high-areal-loading sulfur cathodes. More importantly, this electrolyte forms a stable solid-electrolyte interphase (SEI) layer on graphite surface and thus enables remarkable cyclability of graphite anodes. Lastly, by coupling prelithiated graphite anodes with sulfur cathodes with high areal capacity of ~3 mAh cm-2, we demonstrate prelithiated graphite/sulfur batteries that show high sulfur-specific capacity of ~1000 mAh g-1 and an excellent capacity retention of >65% after 450 cycles at C/10.},
doi = {10.1021/acsami.6b11008},
journal = {ACS Applied Materials and Interfaces},
number = 8,
volume = 9,
place = {United States},
year = {Fri Feb 03 00:00:00 EST 2017},
month = {Fri Feb 03 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 51 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a, b) The discharge-charge profiles and (c) cycling performance of Li/S half cells in conventional DOL/DME and DOL/BTFE electrolytes at C/10 with sulfur loading ~2 mg cm-2. (d) Photos demonstrating (A) the dissolution of 0.25 M Li2S8 in the DME/DOL electrolyte and (B) the relative insolubility of Li2S8more » in the DOL/BTFE electrolyte by stirring stoichiometric amounts of Li2S and sulfur in the electrolytes for 24 h.« less

Save / Share:

Works referenced in this record:

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Electrochemistry of a nonaqueous lithium/sulfur cell
journal, January 1983


The Lithium/Sulfur Rechargeable Cell
journal, January 2002

  • Shim, Joongpyo; Striebel, Kathryn A.; Cairns, Elton J.
  • Journal of The Electrochemical Society, Vol. 149, Issue 10
  • DOI: 10.1149/1.1503076

Rechargeable Lithium Sulfur Battery
journal, May 2003

  • Cheon, Sang-Eun; Ko, Ki-Seok; Cho, Ji-Hoon
  • Journal of The Electrochemical Society, Vol. 150, Issue 6, p. A800-A805
  • DOI: 10.1149/1.1571533

Rechargeable Lithium Sulfur Battery
journal, January 2003

  • Cheon, Sang-Eun; Ko, Ki-Seok; Cho, Ji-Hoon
  • Journal of The Electrochemical Society, Vol. 150, Issue 6
  • DOI: 10.1149/1.1571532

Li/S fundamental chemistry and application to high-performance rechargeable batteries
journal, November 2004


Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries
journal, October 2012

  • Xin, Sen; Gu, Lin; Zhao, Na-Hong
  • Journal of the American Chemical Society, Vol. 134, Issue 45
  • DOI: 10.1021/ja308170k

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery
journal, November 2011


Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries
journal, May 2011

  • Jayaprakash, N.; Shen, J.; Moganty, Surya S.
  • Angewandte Chemie International Edition, Vol. 50, Issue 26, p. 5904-5908
  • DOI: 10.1002/anie.201100637

Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance
journal, January 2012

  • Wang, Yun-Xiao; Huang, Ling; Sun, Li-Chao
  • Journal of Materials Chemistry, Vol. 22, Issue 11
  • DOI: 10.1039/c2jm15041g

Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium–Sulfur Batteries
journal, January 2016


Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes
journal, February 2015

  • Song, Jiangxuan; Gordin, Mikhail L.; Xu, Terrence
  • Angewandte Chemie International Edition, Vol. 54, Issue 14
  • DOI: 10.1002/anie.201411109

Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
journal, January 2013

  • Wei Seh, Zhi; Li, Weiyang; Cha, Judy J.
  • Nature Communications, Vol. 4, Article No. 1331
  • DOI: 10.1038/ncomms2327

Insight into the Effect of Boron Doping on Sulfur/Carbon Cathode in Lithium–Sulfur Batteries
journal, April 2014

  • Yang, Chun-Peng; Yin, Ya-Xia; Ye, Huan
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 11
  • DOI: 10.1021/am501627f

Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium–sulfur batteries
journal, January 2016

  • Wang, Xiaolei; Li, Ge; Li, Jingde
  • Energy & Environmental Science, Vol. 9, Issue 8
  • DOI: 10.1039/C6EE00194G

Sulfur Nanogranular Film-Coated Three-Dimensional Graphene Sponge-Based High Power Lithium Sulfur Battery
journal, January 2016

  • Ahn, Wook; Seo, Min Ho; Jun, Yun-Seok
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 3
  • DOI: 10.1021/acsami.5b10267

A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries
journal, January 2015


High-Energy-Density Lithium–Sulfur Batteries Based on Blade-Cast Pure Sulfur Electrodes
journal, April 2016


High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes
journal, March 2015

  • Lv, Dongping; Zheng, Jianming; Li, Qiuyan
  • Advanced Energy Materials, Vol. 5, Issue 16, Article No. 1402290
  • DOI: 10.1002/aenm.201402290

Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions
journal, June 2013


New insights into the limiting parameters of the Li/S rechargeable cell
journal, February 2012


Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014

  • Lu, Dongping; Shao, Yuyan; Lozano, Terence
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400993

Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode
journal, October 2015

  • Ma, Yiwen; Zhang, Hongzhang; Wu, Baoshan
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14949

Polysulfide dissolution control: the common ion effect
journal, January 2013

  • Shin, Eon Sung; Kim, Keon; Oh, Si Hyoung
  • Chem. Commun., Vol. 49, Issue 20
  • DOI: 10.1039/C2CC36986A

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Review—Superconcentrated Electrolytes for Lithium Batteries
journal, January 2015

  • Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0041514jes

Solvate Ionic Liquid Electrolyte for Li–S Batteries
journal, January 2013

  • Dokko, Kaoru; Tachikawa, Naoki; Yamauchi, Kento
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.111308jes

Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries
journal, June 2012

  • Lin, Zhan; Liu, Zengcai; Fu, Wujun
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200696

Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte
journal, November 2011


Role of LiNO3 in rechargeable lithium/sulfur battery
journal, May 2012


Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-Discharge with an Electrolyte Containing Fluoroether Solvent
journal, November 2014

  • Azimi, Nasim; Xue, Zheng; Rago, Nancy Dietz
  • Journal of The Electrochemical Society, Vol. 162, Issue 1
  • DOI: 10.1149/2.0431501jes

Bis(2,2,2-trifluoroethyl) Ether As an Electrolyte Co-solvent for Mitigating Self-Discharge in Lithium–Sulfur Batteries
journal, May 2014

  • Gordin, Mikhail L.; Dai, Fang; Chen, Shuru
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 11
  • DOI: 10.1021/am501665s

High performance Li-ion sulfur batteries enabled by intercalation chemistry
journal, January 2015

  • Lv, Dongping; Yan, Pengfei; Shao, Yuyan
  • Chemical Communications, Vol. 51, Issue 70
  • DOI: 10.1039/C5CC05171A

A Graphite-Polysulfide Full Cell with DME-Based Electrolyte
journal, January 2016

  • Bhargav, Amruth; Wu, Min; Fu, Yongzhu
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.0151608jes

Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur Batteries
journal, February 2015

  • Moon, Heejoon; Mandai, Toshihiko; Tatara, Ryoichi
  • The Journal of Physical Chemistry C, Vol. 119, Issue 8
  • DOI: 10.1021/jp5128578

Promising Cell Configuration for Next-Generation Energy Storage: Li 2 S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte
journal, June 2016

  • Li, Zhe; Zhang, Shiguo; Terada, Shoshi
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 25
  • DOI: 10.1021/acsami.6b03736

Carbon-Based Anodes for Lithium Sulfur Full Cells with High Cycle Stability
journal, August 2013

  • Brückner, Jan; Thieme, Sören; Böttger-Hiller, Falko
  • Advanced Functional Materials, Vol. 24, Issue 9
  • DOI: 10.1002/adfm.201302169

Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries
journal, July 2011

  • Liu, Nian; Hu, Liangbing; McDowell, Matthew T.
  • ACS Nano, Vol. 5, Issue 8
  • DOI: 10.1021/nn2017167

A High-Performance Polymer Tin Sulfur Lithium Ion Battery
journal, February 2010

  • Hassoun, Jusef; Scrosati, Bruno
  • Angewandte Chemie International Edition, Vol. 49, Issue 13, p. 2371-2374
  • DOI: 10.1002/anie.200907324

The Effect of Interactions and Reduction Products of LiNO 3 , the Anti-Shuttle Agent, in Li-S Battery Systems
journal, December 2014

  • Rosenman, Ariel; Elazari, Ran; Salitra, Gregory
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0861503jes

Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO 3 -Contained Electrolyte
journal, January 2012

  • Zhang, Sheng S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.002207jes

Lithium-Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells
journal, April 2015

  • Hagen, Markus; Hanselmann, Dominik; Ahlbrecht, Katharina
  • Advanced Energy Materials, Vol. 5, Issue 16, 1401986
  • DOI: 10.1002/aenm.201401986

Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries
journal, January 2014

  • Cuisinier, M.; Cabelguen, P. -E.; Adams, B. D.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE00372A

Anodes for Rechargeable Lithium-Sulfur Batteries
journal, April 2015


Improved performance of lithium–sulfur battery with fluorinated electrolyte
journal, December 2013


Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte
journal, January 2015

  • Zu, Chenxi; Azimi, Nasim; Zhang, Zhengcheng
  • Journal of Materials Chemistry A, Vol. 3, Issue 28
  • DOI: 10.1039/C5TA03195H

Works referencing / citing this record:

Anode Interface Engineering and Architecture Design for High‐Performance Lithium–Sulfur Batteries
journal, January 2019


A rechargeable metal-free full-liquid sulfur–bromine battery for sustainable energy storage
journal, January 2018

  • Wang, Lina; Wang, Xiaofei; Liu, Jingyuan
  • Journal of Materials Chemistry A, Vol. 6, Issue 42
  • DOI: 10.1039/c8ta07951j

High-Voltage LiNi 0.5 Mn 1.5 O 4 Cathode Stability of Fluorinated Ether Based on Enhanced Separator Wettability
journal, January 2019

  • Zheng, Hao; Zhou, Xin; Cheng, Sheng
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.0601908jes

Toward High Performance Lithium-Sulfur Batteries Based on Li 2 S Cathodes and Beyond: Status, Challenges, and Perspectives
journal, March 2018

  • Su, Dawei; Zhou, Dong; Wang, Chengyin
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201800154

Stable and Safe Lithium Metal Batteries with Ni-Rich Cathodes Enabled by a High Efficiency Flame Retardant Additive
journal, January 2019

  • Li, Yuan; An, Yongling; Tian, Yuan
  • Journal of The Electrochemical Society, Vol. 166, Issue 13
  • DOI: 10.1149/2.0081913jes

A hybrid ionic liquid-based electrolyte for high-performance lithium–sulfur batteries
journal, January 2020

  • Lu, Hai; Zhu, Yan; Zheng, Bin
  • New Journal of Chemistry, Vol. 44, Issue 2
  • DOI: 10.1039/c9nj03790j

Realizing High-Performance Li-Polysulfide Full Cells by using a Lithium Bis(trifluoromethanesulfonyl)imide Salt Electrolyte for Stable Cyclability
journal, August 2018

  • Ahad, Syed Abdul; Pitchai, Ragupathy; Beyene, Anteneh Marelign
  • ChemSusChem, Vol. 11, Issue 19
  • DOI: 10.1002/cssc.201801432

Toward Better Lithium–Sulfur Batteries: Functional Non-aqueous Liquid Electrolytes
journal, August 2018

  • Xiong, Shizhao; Regula, Michael; Wang, Donghai
  • Electrochemical Energy Reviews, Vol. 1, Issue 3
  • DOI: 10.1007/s41918-018-0015-y

Lithium Molybdate (Li 2 MoO 3 )−Sulfur Battery
journal, January 2020

  • Dharmasena, Ruchira R.; Martinez‐Garcia, Alejandro; Atla, Veerendra
  • Batteries & Supercaps, Vol. 3, Issue 3
  • DOI: 10.1002/batt.201900176

Revisiting the Role of Polysulfides in Lithium-Sulfur Batteries
journal, March 2018


Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges
journal, January 2018


Reduced Shuttle Effect of Lithium−sulfur Batteries by using a Simple Graphite-Modified Separator with a Preformed SEI Film
journal, November 2017


Development and Challenges of Functional Electrolytes for High-Performance Lithium-Sulfur Batteries
journal, July 2018

  • Wang, Lili; Ye, Yusheng; Chen, Nan
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201800919

Effect of soluble sulfur species on the electrochemical behavior of lithium–sulfur batteries with dual-phase electrolytes
journal, January 2019

  • Zhao, Chengcheng; Yang, Hao; Wang, Xiaofei
  • Sustainable Energy & Fuels, Vol. 3, Issue 8
  • DOI: 10.1039/c9se00291j

Structure-Property Relationships of Organic Electrolytes and Their Effects on Li/S Battery Performance
journal, June 2017

  • Kaiser, Mohammad Rejaul; Chou, Shulei; Liu, Hua-Kun
  • Advanced Materials, Vol. 29, Issue 48
  • DOI: 10.1002/adma.201700449

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.