DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Continuous and dynamic spectral tuning of single nanowire lasers with subnanometer resolution using hydrostatic pressure

Abstract

In this paper, we report continuous, dynamic, reversible, and widely tunable lasing from 367 to 337 nm from single GaN nanowires (NWs) by applying hydrostatic pressure up to ~7 GPa. The GaN NW lasers, with heights of 4–5 μm and diameters ~140 nm, are fabricated using a lithographically defined two-step top-down technique. The wavelength tuning is caused by an increasing Γ direct bandgap of GaN with increasing pressure and is precisely controllable to subnanometer resolution. The observed pressure coefficients of the NWs are ~40% larger compared with GaN microstructures fabricated from the same material or from reported bulk GaN values, revealing a nanoscale-related effect that significantly enhances the tuning range using this approach. Finally, this approach can be generally applied to other semiconductor NW lasers to potentially achieve full spectral coverage from the UV to IR.

Authors:
 [1];  [2];  [3];  [2];  [1];  [3]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies
  2. Univ. of New Mexico, Albuquerque, NM (United States). Center for High Technology Materials
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Org.:
Univ. of New Mexico, Albuquerque, NM (United States)
OSTI Identifier:
1347350
Report Number(s):
SAND-2015-0301J
Journal ID: ISSN 2040-3364; 562194
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Nanoscale
Additional Journal Information:
Journal Volume: 7; Journal Issue: 21; Journal ID: ISSN 2040-3364
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; nanowire; GaN; photoluminescence; lasing; tuning; top-down; bandgap

Citation Formats

Liu, Sheng, Li, Changyi, Figiel, Jeffrey J., Brueck, Steven R. J., Brener, Igal, and Wang, George T. Continuous and dynamic spectral tuning of single nanowire lasers with subnanometer resolution using hydrostatic pressure. United States: N. p., 2015. Web. doi:10.1039/c5nr01855b.
Liu, Sheng, Li, Changyi, Figiel, Jeffrey J., Brueck, Steven R. J., Brener, Igal, & Wang, George T. Continuous and dynamic spectral tuning of single nanowire lasers with subnanometer resolution using hydrostatic pressure. United States. https://doi.org/10.1039/c5nr01855b
Liu, Sheng, Li, Changyi, Figiel, Jeffrey J., Brueck, Steven R. J., Brener, Igal, and Wang, George T. Mon . "Continuous and dynamic spectral tuning of single nanowire lasers with subnanometer resolution using hydrostatic pressure". United States. https://doi.org/10.1039/c5nr01855b. https://www.osti.gov/servlets/purl/1347350.
@article{osti_1347350,
title = {Continuous and dynamic spectral tuning of single nanowire lasers with subnanometer resolution using hydrostatic pressure},
author = {Liu, Sheng and Li, Changyi and Figiel, Jeffrey J. and Brueck, Steven R. J. and Brener, Igal and Wang, George T.},
abstractNote = {In this paper, we report continuous, dynamic, reversible, and widely tunable lasing from 367 to 337 nm from single GaN nanowires (NWs) by applying hydrostatic pressure up to ~7 GPa. The GaN NW lasers, with heights of 4–5 μm and diameters ~140 nm, are fabricated using a lithographically defined two-step top-down technique. The wavelength tuning is caused by an increasing Γ direct bandgap of GaN with increasing pressure and is precisely controllable to subnanometer resolution. The observed pressure coefficients of the NWs are ~40% larger compared with GaN microstructures fabricated from the same material or from reported bulk GaN values, revealing a nanoscale-related effect that significantly enhances the tuning range using this approach. Finally, this approach can be generally applied to other semiconductor NW lasers to potentially achieve full spectral coverage from the UV to IR.},
doi = {10.1039/c5nr01855b},
journal = {Nanoscale},
number = 21,
volume = 7,
place = {United States},
year = {Mon Apr 27 00:00:00 EDT 2015},
month = {Mon Apr 27 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanowire photonics
journal, October 2009


InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit
journal, January 2013


Coaxial silicon nanowires as solar cells and nanoelectronic power sources
journal, October 2007

  • Tian, Bozhi; Zheng, Xiaolin; Kempa, Thomas J.
  • Nature, Vol. 449, Issue 7164, p. 885-889
  • DOI: 10.1038/nature06181

Nanowire-based dye-sensitized solar cells
journal, January 2005

  • Baxter, Jason B.; Aydil, Eray S.
  • Applied Physics Letters, Vol. 86, Issue 5
  • DOI: 10.1063/1.1861510

Single-nanowire solar cells beyond the Shockley–Queisser limit
journal, March 2013

  • Krogstrup, Peter; Jørgensen, Henrik Ingerslev; Heiss, Martin
  • Nature Photonics, Vol. 7, Issue 4
  • DOI: 10.1038/nphoton.2013.32

III-nitride core–shell nanowire arrayed solar cells
journal, April 2012


Toward Smart and Ultra-efficient Solid-State Lighting
journal, June 2014

  • Tsao, Jeffrey Y.; Crawford, Mary H.; Coltrin, Michael E.
  • Advanced Optical Materials, Vol. 2, Issue 9
  • DOI: 10.1002/adom.201400131

Growth of nanowire superlattice structures for nanoscale photonics and electronics
journal, February 2002

  • Gudiksen, Mark S.; Lauhon, Lincoln J.; Wang, Jianfang
  • Nature, Vol. 415, Issue 6872, p. 617-620
  • DOI: 10.1038/415617a

Nanowire Ultraviolet Photodetectors and Optical Switches
journal, January 2002


ZnO Nanowire UV Photodetectors with High Internal Gain
journal, April 2007

  • Soci, C.; Zhang, A.; Xiang, B.
  • Nano Letters, Vol. 7, Issue 4
  • DOI: 10.1021/nl070111x

Tunable nanowire nonlinear optical probe
journal, June 2007

  • Nakayama, Yuri; Pauzauskie, Peter J.; Radenovic, Aleksandra
  • Nature, Vol. 447, Issue 7148
  • DOI: 10.1038/nature05921

Nonlinear optics in photonic nanowires
journal, January 2008

  • Foster, Mark A.; Turner, Amy C.; Lipson, Michal
  • Optics Express, Vol. 16, Issue 2
  • DOI: 10.1364/OE.16.001300

All-optical active switching in individual semiconductor nanowires
journal, September 2012

  • Piccione, Brian; Cho, Chang-Hee; van Vugt, Lambert K.
  • Nature Nanotechnology, Vol. 7, Issue 10
  • DOI: 10.1038/nnano.2012.144

Semiconductor nanowire lasers
journal, January 2013

  • Ma, Yaoguang; Guo, Xin; Wu, Xiaoqin
  • Advances in Optics and Photonics, Vol. 5, Issue 3
  • DOI: 10.1364/AOP.5.000216

Optically pumped room-temperature GaAs nanowire lasers
journal, November 2013


Continuous Alloy-Composition Spatial Grading and Superbroad Wavelength-Tunable Nanowire Lasers on a Single Chip
journal, February 2009

  • Pan, Anlian; Zhou, Weichang; Leong, Eunice S. P.
  • Nano Letters, Vol. 9, Issue 2
  • DOI: 10.1021/nl803456k

Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers
journal, August 2008

  • Qian, Fang; Li, Yat; Gradečak, Silvija
  • Nature Materials, Vol. 7, Issue 9
  • DOI: 10.1038/nmat2253

Tailoring the Lasing Modes in Semiconductor Nanowire Cavities Using Intrinsic Self-Absorption
journal, February 2013

  • Liu, Xinfeng; Zhang, Qing; Xiong, Qihua
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl304362u

Wavelength Tunable Single Nanowire Lasers Based on Surface Plasmon Polariton Enhanced Burstein–Moss Effect
journal, October 2013

  • Liu, Xinfeng; Zhang, Qing; Yip, Jing Ngei
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402836x

Broadly Defining Lasing Wavelengths in Single Bandgap-Graded Semiconductor Nanowires
journal, May 2014

  • Yang, Zongyin; Wang, Delong; Meng, Chao
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl500432m

Multi-Colour Nanowire Photonic Crystal Laser Pixels
journal, October 2013

  • Wright, Jeremy B.; Liu, Sheng; Wang, George T.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02982

Optically Pumped Green (530–560 nm) Stimulated Emissions from InGaN/GaN Multiple-Quantum-Well Triangular-Lattice Nanocolumn Arrays
journal, April 2011

  • Ishizawa, Shusuke; Kishino, Katsumi; Araki, Ryuichi
  • Applied Physics Express, Vol. 4, Issue 5
  • DOI: 10.1143/APEX.4.055001

Single-Nanowire Single-Mode Laser
journal, March 2011

  • Xiao, Yao; Meng, Chao; Wang, Pan
  • Nano Letters, Vol. 11, Issue 3
  • DOI: 10.1021/nl1040308

Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends
journal, August 1999


Bowing of the band gap pressure coefficient in InxGa1−xN alloys
journal, February 2008

  • Franssen, G.; Gorczyca, I.; Suski, T.
  • Journal of Applied Physics, Vol. 103, Issue 3
  • DOI: 10.1063/1.2837072

Single-mode GaN nanowire lasers
journal, January 2012

  • Li, Qiming; Wright, Jeremy B.; Chow, Weng W.
  • Optics Express, Vol. 20, Issue 16
  • DOI: 10.1364/OE.20.017873

Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays
journal, January 2011

  • Li, Qiming; Westlake, Karl R.; Crawford, Mary H.
  • Optics Express, Vol. 19, Issue 25
  • DOI: 10.1364/OE.19.025528

Stress-induced phase transformation and optical coupling of silver nanoparticle superlattices into mechanically stable nanowires
journal, June 2014

  • Li, Binsong; Wen, Xiaodong; Li, Ruipeng
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5179

Diamond anvil cell and high-pressure physical investigations
journal, January 1983


Stability of the wurtzite-type structure under high pressure: GaN and InN
journal, January 1994

  • Ueno, Masaki; Yoshida, Minoru; Onodera, Akifumi
  • Physical Review B, Vol. 49, Issue 1
  • DOI: 10.1103/PhysRevB.49.14

High-pressure structure of gallium nitride: Wurtzite-to-rocksalt phase transition
journal, May 1993


Abnormal pressure-induced structural transformations of gallium nitride nanowires
journal, April 2010

  • Dong, Zhaohui; Song, Yang
  • Applied Physics Letters, Vol. 96, Issue 15
  • DOI: 10.1063/1.3394009

Pressure Tuning of the Optical Properties of GaAs Nanowires
journal, March 2012

  • Zardo, Ilaria; Yazji, Sara; Marini, Carlo
  • ACS Nano, Vol. 6, Issue 4
  • DOI: 10.1021/nn300228u

Dependence of the fundamental band gap of AlxGa1−xN on alloy composition and pressure
journal, June 1999

  • Shan, W.; Ager, J. W.; Yu, K. M.
  • Journal of Applied Physics, Vol. 85, Issue 12
  • DOI: 10.1063/1.370696

The Compressibility of Media under Extreme Pressures
journal, September 1944

  • Murnaghan, F. D.
  • Proceedings of the National Academy of Sciences, Vol. 30, Issue 9
  • DOI: 10.1073/pnas.30.9.244

GaN, AlN, and InN: A review
journal, July 1992

  • Strite, S.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 10, Issue 4
  • DOI: 10.1116/1.585897

Pressure-dependent photoluminescence study of ZnO nanowires
journal, April 2005

  • Shan, W.; Walukiewicz, W.; Ager, J. W.
  • Applied Physics Letters, Vol. 86, Issue 15
  • DOI: 10.1063/1.1901827

Photoluminescence study of ZnO nanotubes under hydrostatic pressure
journal, March 2006

  • Chen, S. J.; Liu, Y. C.; Shao, C. L.
  • Applied Physics Letters, Vol. 88, Issue 13
  • DOI: 10.1063/1.2191884

Pressure-dependent photoluminescence of ZnO nanosheets
journal, November 2005

  • Chen, S. J.; Liu, Y. C.; Shao, C. L.
  • Journal of Applied Physics, Vol. 98, Issue 10
  • DOI: 10.1063/1.2132519

Pressure response of the ultraviolet photoluminescence of ZnO and MgZnO nanocrystallites
journal, October 2006

  • Huso, Jesse; Morrison, John L.; Hoeck, Heather
  • Applied Physics Letters, Vol. 89, Issue 17
  • DOI: 10.1063/1.2369917

Vibrational, electronic and structural properties of wurtzite GaAs nanowires under hydrostatic pressure
journal, September 2014

  • Zhou, Wei; Chen, Xiao-Jia; Zhang, Jian-Bo
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06472

Spectroscopy of II–VI nanocrystals at high pressure and high temperature
journal, October 1996


High-pressure Raman and photoluminescence of highly anisotropic CdS nanowires
journal, January 2007

  • Fan, H. M.; Ni, Z. H.; Feng, Y. P.
  • Journal of Raman Spectroscopy, Vol. 38, Issue 9
  • DOI: 10.1002/jrs.1724

Elastic Properties of GaN Nanowires: Revealing the Influence of Planar Defects on Young’s Modulus at Nanoscale
journal, December 2014

  • Dai, Sheng; Zhao, Jiong; He, Mo-rigen
  • Nano Letters, Vol. 15, Issue 1
  • DOI: 10.1021/nl501986d

Diameter-Dependent Electromechanical Properties of GaN Nanowires
journal, February 2006

  • Nam, Chang-Yong; Jaroenapibal, Papot; Tham, Douglas
  • Nano Letters, Vol. 6, Issue 2
  • DOI: 10.1021/nl051860m

Effect of Growth Orientation and Diameter on the Elasticity of GaN Nanowires. A Combined in Situ TEM and Atomistic Modeling Investigation
journal, February 2011

  • Bernal, Rodrigo A.; Agrawal, Ravi; Peng, Bei
  • Nano Letters, Vol. 11, Issue 2
  • DOI: 10.1021/nl103450e

Reflection of guided modes in a semiconductor nanowire laser
journal, August 2003

  • Maslov, A. V.; Ning, C. Z.
  • Applied Physics Letters, Vol. 83, Issue 6
  • DOI: 10.1063/1.1599037

Modal gain in a semiconductor nanowire laser with anisotropic bandstructure
journal, October 2004


Distributed feedback gallium nitride nanowire lasers
journal, January 2014

  • Wright, Jeremy B.; Campione, Salvatore; Liu, Sheng
  • Applied Physics Letters, Vol. 104, Issue 4
  • DOI: 10.1063/1.4862193

Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data
journal, January 1983

  • Chylek, Petr; Ramaswamy, V.; Ashkin, A.
  • Applied Optics, Vol. 22, Issue 15
  • DOI: 10.1364/AO.22.002302

The refractive index and electronic gap of water and ice increase with increasing pressure
journal, May 2014

  • Pan, Ding; Wan, Quan; Galli, Giulia
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4919

Piezo‐ and elasto‐optic properties of liquids under high pressure. II. Refractive index vs density
journal, December 1978

  • Vedam, K.; Limsuwan, Pichet
  • The Journal of Chemical Physics, Vol. 69, Issue 11
  • DOI: 10.1063/1.436530

High pressure phase transition in rape-seed oil
journal, July 2007


Pressure dependence of optoelectronic properties of GaN in the zinc-blende structure
journal, January 2002


Tuning the Light Emission from GaAs Nanowires over 290 meV with Uniaxial Strain
journal, February 2013

  • Signorello, Giorgio; Karg, Siegfried; Björk, Mikael T.
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl303694c

Works referencing / citing this record:

Wavelength‐Tunable Micro/Nanolasers
journal, June 2019

  • Zhuge, Ming‐Hua; Pan, Caofeng; Zheng, Yazhi
  • Advanced Optical Materials, Vol. 7, Issue 17
  • DOI: 10.1002/adom.201900275

Tailoring Spectral and Temporal Properties of Semiconductor Nanowire Lasers
journal, June 2019

  • Zapf, Maximilian; Sidiropoulos, Themistoklis; Röder, Robert
  • Advanced Optical Materials, Vol. 7, Issue 17
  • DOI: 10.1002/adom.201900504

Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser
journal, February 2017

  • Yan, Xin; Wei, Wei; Tang, Fengling
  • Applied Physics Letters, Vol. 110, Issue 6
  • DOI: 10.1063/1.4975780

Tunable single-mode lasing in a single semiconductor microrod
journal, January 2018