DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent

Abstract

Carbon capture and storage is an important strategy for stabilizing the increasing concentration of atmospheric CO2 and the global temperature. A possible approach toward reversing this trend and decreasing the atmospheric CO2 concentration is to remove the CO2 directly from air (direct air capture). In this paper, we report a simple aqueous guanidine sorbent that captures CO2 from ambient air and binds it as a crystalline carbonate salt by guanidinium hydrogen bonding. The resulting solid has very low aqueous solubility (Ksp=1.0(4)×10-8), which facilitates its separation from solution by filtration. The bound CO2 can be released by relatively mild heating of the crystals at 80–120 °C, which regenerates the guanidine sorbent quantitatively. Finally and thus, this crystallization-based approach to CO2 separation from air requires minimal energy and chemical input, and offers the prospect for low-cost direct air capture technologies.

Authors:
 [1];  [2];  [1];  [2];  [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  2. (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Org.:
Univ. of Tennessee, Knoxville, TN (United States); Univ. of Texas, Austin, TX (United States)
OSTI Identifier:
1340454
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 56; Journal Issue: 4; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; carbon capture; crystallization; guanidines; hydrogen bonding; sustainable chemistry

Citation Formats

Seipp, Charles A., Univ. of Texas, Austin, TX, Williams, Neil J., Univ. of Tennessee, Knoxville, TN, Kidder, Michelle K., and Custelcean, Radu. CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent. United States: N. p., 2016. Web. doi:10.1002/anie.201610916.
Seipp, Charles A., Univ. of Texas, Austin, TX, Williams, Neil J., Univ. of Tennessee, Knoxville, TN, Kidder, Michelle K., & Custelcean, Radu. CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent. United States. https://doi.org/10.1002/anie.201610916
Seipp, Charles A., Univ. of Texas, Austin, TX, Williams, Neil J., Univ. of Tennessee, Knoxville, TN, Kidder, Michelle K., and Custelcean, Radu. Wed . "CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent". United States. https://doi.org/10.1002/anie.201610916. https://www.osti.gov/servlets/purl/1340454.
@article{osti_1340454,
title = {CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent},
author = {Seipp, Charles A. and Univ. of Texas, Austin, TX and Williams, Neil J. and Univ. of Tennessee, Knoxville, TN and Kidder, Michelle K. and Custelcean, Radu},
abstractNote = {Carbon capture and storage is an important strategy for stabilizing the increasing concentration of atmospheric CO2 and the global temperature. A possible approach toward reversing this trend and decreasing the atmospheric CO2 concentration is to remove the CO2 directly from air (direct air capture). In this paper, we report a simple aqueous guanidine sorbent that captures CO2 from ambient air and binds it as a crystalline carbonate salt by guanidinium hydrogen bonding. The resulting solid has very low aqueous solubility (Ksp=1.0(4)×10-8), which facilitates its separation from solution by filtration. The bound CO2 can be released by relatively mild heating of the crystals at 80–120 °C, which regenerates the guanidine sorbent quantitatively. Finally and thus, this crystallization-based approach to CO2 separation from air requires minimal energy and chemical input, and offers the prospect for low-cost direct air capture technologies.},
doi = {10.1002/anie.201610916},
journal = {Angewandte Chemie (International Edition)},
number = 4,
volume = 56,
place = {United States},
year = {Wed Dec 21 00:00:00 EST 2016},
month = {Wed Dec 21 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 67 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1. Figure 1.: Atmospheric CO2 capture via crystalline PyBIGH2(CO3)(H2O)4. a) Reaction of aqueous PyBIG (ChemDraw structure on the left) with CO2 to form PyBIGH2(CO3)(H2O)4 (X-ray crystal structure on the right). b) Hydrogen-bonded [CO3(H2O)42–]n cluster formed in the crystal. c) CO32– binding site, with the anion accepting 4 water and 5 guanidiniummore » hydrogen bonds. d) Hydrogen bonding of the [CO3(H2O)42–]n cluster by the cationic stacks. e) Overlay of the experimental PXRD pattern of the bulk crystalline product (red) and the simulated PXRD pattern from the single-crystal X-ray data (blue).« less

Save / Share:

Works referenced in this record:

Application of Amine-Tethered Solid Sorbents for Direct CO 2 Capture from the Ambient Air
journal, March 2011

  • Choi, Sunho; Drese, Jeffrey H.; Eisenberger, Peter M.
  • Environmental Science & Technology, Vol. 45, Issue 6
  • DOI: 10.1021/es102797w

Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent
journal, December 2011

  • Goeppert, Alain; Czaun, Miklos; May, Robert B.
  • Journal of the American Chemical Society, Vol. 133, Issue 50, p. 20164-20167
  • DOI: 10.1021/ja2100005

Learning through a portfolio of carbon capture and storage demonstration projects
journal, January 2016


Why Capture CO2 from the Atmosphere?
journal, September 2009


Seven chemical separations to change the world
journal, April 2016

  • Sholl, David S.; Lively, Ryan P.
  • Nature, Vol. 532, Issue 7600
  • DOI: 10.1038/532435a

Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis
journal, January 2013

  • Wang, Tao; Lackner, Klaus S.; Wright, Allen B.
  • Phys. Chem. Chem. Phys., Vol. 15, Issue 2
  • DOI: 10.1039/C2CP43124F

The urgency of the development of CO2 capture from ambient air
journal, July 2012

  • Lackner, K. S.; Brennan, S.; Matter, J. M.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 33
  • DOI: 10.1073/pnas.1108765109

Direct Air Capture of CO 2 by Physisorbent Materials
journal, October 2015

  • Kumar, Amrit; Madden, David G.; Lusi, Matteo
  • Angewandte Chemie, Vol. 127, Issue 48
  • DOI: 10.1002/ange.201506952

Aqueous Sulfate Separation by Crystallization of Sulfate-Water Clusters
journal, August 2015

  • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
  • Angewandte Chemie, Vol. 127, Issue 36
  • DOI: 10.1002/ange.201506314

A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO 2 Removal and Air Capture Using Physisorption
journal, July 2016

  • Bhatt, Prashant M.; Belmabkhout, Youssef; Cadiau, Amandine
  • Journal of the American Chemical Society, Vol. 138, Issue 29
  • DOI: 10.1021/jacs.6b05345

Capture CO 2 from Ambient Air Using Nanoconfined Ion Hydration
journal, February 2016

  • Shi, Xiaoyang; Xiao, Hang; Lackner, Klaus S.
  • Angewandte Chemie, Vol. 128, Issue 12
  • DOI: 10.1002/ange.201507846

Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—Thermodynamic analysis
journal, July 2009

  • Mahmoudkhani, Maryam; Keith, David W.
  • International Journal of Greenhouse Gas Control, Vol. 3, Issue 4
  • DOI: 10.1016/j.ijggc.2009.02.003

Post-combustion Capture of CO 2 : Results from the Solvent Absorption Capture Plant at Hazelwood Power Station Using Potassium Carbonate Solvent
journal, November 2011

  • Mumford, Kathryn A.; Smith, Kathryn H.; Anderson, Clare J.
  • Energy & Fuels, Vol. 26, Issue 1
  • DOI: 10.1021/ef201192n

Energy and Material Balance of CO 2 Capture from Ambient Air
journal, November 2007

  • Zeman, Frank
  • Environmental Science & Technology, Vol. 41, Issue 21
  • DOI: 10.1021/es070874m

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc)
journal, April 2012

  • McDonald, Thomas M.; Lee, Woo Ram; Mason, Jarad A.
  • Journal of the American Chemical Society, Vol. 134, Issue 16, p. 7056-7065
  • DOI: 10.1021/ja300034j

Aqueous Sulfate Separation by Sequestration of [(SO 4 ) 2 (H 2 O) 4 ] 4− Clusters within Highly Insoluble Imine-Linked Bis-Guanidinium Crystals
journal, December 2015

  • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
  • Chemistry - A European Journal, Vol. 22, Issue 6
  • DOI: 10.1002/chem.201504651

Moisture Swing Sorbent for Carbon Dioxide Capture from Ambient Air
journal, August 2011

  • Wang, Tao; Lackner, Klaus S.; Wright, Allen
  • Environmental Science & Technology, Vol. 45, Issue 15
  • DOI: 10.1021/es201180v

Amine-Based Nanofibrillated Cellulose As Adsorbent for CO 2 Capture from Air
journal, October 2011

  • Gebald, Christoph; Wurzbacher, Jan Andre; Tingaut, Philippe
  • Environmental Science & Technology, Vol. 45, Issue 20
  • DOI: 10.1021/es202223p

Towards the Experimental Decomposition Rate of Carbonic Acid (H2CO3) in Aqueous Solution
journal, January 2002


Amine-Tethered Solid Adsorbents Coupling High Adsorption Capacity and Regenerability for CO2 Capture From Ambient Air
journal, May 2011

  • Choi, Sunho; Gray, McMahan L.; Jones, Christopher W.
  • ChemSusChem, Vol. 4, Issue 5
  • DOI: 10.1002/cssc.201000355

Carbon Dioxide Capture from Atmospheric Air Using Sodium Hydroxide Spray
journal, April 2008

  • Stolaroff, Joshuah K.; Keith, David W.; Lowry, Gregory V.
  • Environmental Science & Technology, Vol. 42, Issue 8
  • DOI: 10.1021/es702607w

CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor
journal, February 2009


Direct Capture of CO2 from Ambient Air
journal, August 2016

  • Sanz-Pérez, Eloy S.; Murdock, Christopher R.; Didas, Stephanie A.
  • Chemical Reviews, Vol. 116, Issue 19, p. 11840-11876
  • DOI: 10.1021/acs.chemrev.6b00173

Process design and energy requirements for the capture of carbon dioxide from air
journal, December 2006

  • Baciocchi, Renato; Storti, Giuseppe; Mazzotti, Marco
  • Chemical Engineering and Processing: Process Intensification, Vol. 45, Issue 12, p. 1047-1058
  • DOI: 10.1016/j.cep.2006.03.015

Capture CO 2 from Ambient Air Using Nanoconfined Ion Hydration
journal, February 2016

  • Shi, Xiaoyang; Xiao, Hang; Lackner, Klaus S.
  • Angewandte Chemie International Edition, Vol. 55, Issue 12
  • DOI: 10.1002/anie.201507846

Direct Air Capture of CO 2 by Physisorbent Materials
journal, October 2015

  • Kumar, Amrit; Madden, David G.; Lusi, Matteo
  • Angewandte Chemie International Edition, Vol. 54, Issue 48
  • DOI: 10.1002/anie.201506952

Aqueous Sulfate Separation by Crystallization of Sulfate-Water Clusters
journal, August 2015

  • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
  • Angewandte Chemie International Edition, Vol. 54, Issue 36
  • DOI: 10.1002/anie.201506314

A Guide to CO2 Sequestration
journal, June 2003


The urgency of the development of CO2 capture from ambient air
text, January 2012

  • Lackner, Klaus S.; Brennan, Sarah; Matter, Juerg M.
  • Columbia University
  • DOI: 10.7916/d8348w3g

Works referencing / citing this record:

Molecular Tectonics: A Node‐and‐Linker Building Block Approach to a Family of Hydrogen‐Bonded Frameworks
journal, July 2019

  • Boer, Stephanie A.; Morshedi, Mahbod; Tarzia, Andrew
  • Chemistry – A European Journal, Vol. 25, Issue 42
  • DOI: 10.1002/chem.201902117

Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power
journal, May 2018


Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer
journal, February 2019


Surprisingly selective sulfate extraction by a simple monofunctional di(imino)guanidinium micelle-forming anion receptor
journal, January 2018

  • Williams, Neil J.; Seipp, Charles A.; Garrabrant, Kathleen A.
  • Chemical Communications, Vol. 54, Issue 72
  • DOI: 10.1039/c8cc05115a

Recent advances in self-assembled amidinium and guanidinium frameworks
journal, January 2019


Organocatalyzed carboxylative cyclization of propargylic amides with atmospheric CO 2 towards oxazolidine-2,4-diones
journal, January 2019

  • Zhou, Hui; Mu, Sen; Ren, Bai-Hao
  • Green Chemistry, Vol. 21, Issue 5
  • DOI: 10.1039/c8gc03929a

Transforming atmospheric CO 2 into alternative fuels: a metal-free approach under ambient conditions
journal, January 2019

  • Chandra Sau, Samaresh; Bhattacharjee, Rameswar; Hota, Pradip Kumar
  • Chemical Science, Vol. 10, Issue 6
  • DOI: 10.1039/c8sc03581d

A three dimensional hydrogen bonded organic framework assembled through antielectrostatic hydrogen bonds
journal, January 2019

  • Cullen, Duncan A.; Gardiner, Michael G.; White, Nicholas G.
  • Chemical Communications, Vol. 55, Issue 80
  • DOI: 10.1039/c9cc06707h

Stable abnormal N-heterocyclic carbenes and their applications
journal, January 2020

  • Sau, Samaresh Chandra; Hota, Pradip Kumar; Mandal, Swadhin K.
  • Chemical Society Reviews, Vol. 49, Issue 4
  • DOI: 10.1039/c9cs00866g

Targeting 17q23 amplicon to overcome the resistance to anti-HER2 therapy in HER2+ breast cancer
journal, November 2018


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.