DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power

Abstract

Using negative emissions technologies for the net removal of greenhouse gases from the atmosphere could provide a pathway to limit global temperature rises. Direct air capture of carbon dioxide offers the prospect of permanently lowering the atmospheric CO2 concentration, providing that economical and energy-efficient technologies can be developed and deployed on a large scale. Here in this paper, we report an approach to direct air capture, at the laboratory scale, using mostly off-the-shelf materials and equipment. First, CO2 absorption is achieved with readily available and environmentally friendly aqueous amino acid solutions (glycine and sarcosine) using a household humidifier. The CO2-loaded solutions are then reacted with a simple guanidine compound, which crystallizes as a very insoluble carbonate salt and regenerates the amino acid sorbent. Finally, effective CO2 release and near-quantitative regeneration of the guanidine compound are achieved by relatively mild heating of the carbonate crystals using concentrated solar power.

Authors:
 [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1460227
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 3; Journal Issue: 7; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 54 ENVIRONMENTAL SCIENCES

Citation Formats

Brethome, Flavien M., Williams, Neil J., A Seipp, Charles, Kidder, Michelle, and Custelcean, Radu. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. United States: N. p., 2018. Web. doi:10.1038/s41560-018-0150-z.
Brethome, Flavien M., Williams, Neil J., A Seipp, Charles, Kidder, Michelle, & Custelcean, Radu. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. United States. https://doi.org/10.1038/s41560-018-0150-z
Brethome, Flavien M., Williams, Neil J., A Seipp, Charles, Kidder, Michelle, and Custelcean, Radu. Mon . "Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power". United States. https://doi.org/10.1038/s41560-018-0150-z. https://www.osti.gov/servlets/purl/1460227.
@article{osti_1460227,
title = {Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power},
author = {Brethome, Flavien M. and Williams, Neil J. and A Seipp, Charles and Kidder, Michelle and Custelcean, Radu},
abstractNote = {Using negative emissions technologies for the net removal of greenhouse gases from the atmosphere could provide a pathway to limit global temperature rises. Direct air capture of carbon dioxide offers the prospect of permanently lowering the atmospheric CO2 concentration, providing that economical and energy-efficient technologies can be developed and deployed on a large scale. Here in this paper, we report an approach to direct air capture, at the laboratory scale, using mostly off-the-shelf materials and equipment. First, CO2 absorption is achieved with readily available and environmentally friendly aqueous amino acid solutions (glycine and sarcosine) using a household humidifier. The CO2-loaded solutions are then reacted with a simple guanidine compound, which crystallizes as a very insoluble carbonate salt and regenerates the amino acid sorbent. Finally, effective CO2 release and near-quantitative regeneration of the guanidine compound are achieved by relatively mild heating of the carbonate crystals using concentrated solar power.},
doi = {10.1038/s41560-018-0150-z},
journal = {Nature Energy},
number = 7,
volume = 3,
place = {United States},
year = {Mon May 07 00:00:00 EDT 2018},
month = {Mon May 07 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 88 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

State of the Climate in 2016
journal, August 2017


Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent
journal, December 2011

  • Goeppert, Alain; Czaun, Miklos; May, Robert B.
  • Journal of the American Chemical Society, Vol. 133, Issue 50, p. 20164-20167
  • DOI: 10.1021/ja2100005

Comprehensive Study of the Hydration and Dehydration Reactions of Carbon Dioxide in Aqueous Solution
journal, December 2009

  • Wang, Xiaoguang; Conway, William; Burns, Robert
  • The Journal of Physical Chemistry A, Vol. 114, Issue 4, p. 1734-1740
  • DOI: 10.1021/jp909019u

Why Capture CO2 from the Atmosphere?
journal, September 2009


Negative emissions physically needed to keep global warming below 2 °C
journal, August 2015

  • Gasser, T.; Guivarch, C.; Tachiiri, K.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8958

An air–liquid contactor for large-scale capture of CO 2 from air
journal, September 2012

  • Holmes, Geoffrey; Keith, David W.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 370, Issue 1974
  • DOI: 10.1098/rsta.2012.0137

Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis
journal, January 2013

  • Wang, Tao; Lackner, Klaus S.; Wright, Allen B.
  • Phys. Chem. Chem. Phys., Vol. 15, Issue 2
  • DOI: 10.1039/C2CP43124F

Young people's burden: requirement of negative CO 2 emissions
journal, January 2017

  • Hansen, James; Sato, Makiko; Kharecha, Pushker
  • Earth System Dynamics, Vol. 8, Issue 3
  • DOI: 10.5194/esd-8-577-2017

Protonation Constants and Thermodynamic Properties of Amino Acid Salts for CO 2 Capture at High Temperatures
journal, July 2014

  • Yang, Nan; Xu, Dong-Yao; Wei, Chiao-Chien
  • Industrial & Engineering Chemistry Research, Vol. 53, Issue 32
  • DOI: 10.1021/ie502256m

The urgency of the development of CO2 capture from ambient air
journal, July 2012

  • Lackner, K. S.; Brennan, S.; Matter, J. M.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 33
  • DOI: 10.1073/pnas.1108765109

Slicing the pie: how big could carbon dioxide removal be?: Slicing the pie
journal, July 2017

  • Psarras, Peter; Krutka, Holly; Fajardy, Mathilde
  • Wiley Interdisciplinary Reviews: Energy and Environment, Vol. 6, Issue 5
  • DOI: 10.1002/wene.253

Amine–Oxide Hybrid Materials for CO 2 Capture from Ambient Air
journal, September 2015

  • Didas, Stephanie A.; Choi, Sunho; Chaikittisilp, Watcharop
  • Accounts of Chemical Research, Vol. 48, Issue 10
  • DOI: 10.1021/acs.accounts.5b00284

Conceptual Design of a Novel CO 2 Capture Process Based on Precipitating Amino Acid Solvents
journal, August 2013

  • Sanchez Fernandez, Eva; Heffernan, Katarzyna; van der Ham, Leen V.
  • Industrial & Engineering Chemistry Research, Vol. 52, Issue 34
  • DOI: 10.1021/ie401228r

A calorimetric study of carbamate formation
journal, May 2011

  • McCann, Nichola; Maeder, Marcel; Hasse, Hans
  • The Journal of Chemical Thermodynamics, Vol. 43, Issue 5
  • DOI: 10.1016/j.jct.2010.12.001

Amino Acids as Carbon Capture Solvents: Chemical Kinetics and Mechanism of the Glycine + CO 2 Reaction
journal, June 2013

  • Guo, Dongfang; Thee, Hendy; Tan, Chun Y.
  • Energy & Fuels, Vol. 27, Issue 7
  • DOI: 10.1021/ef400413r

Energy and Material Balance of CO 2 Capture from Ambient Air
journal, November 2007

  • Zeman, Frank
  • Environmental Science & Technology, Vol. 41, Issue 21
  • DOI: 10.1021/es070874m

Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc)
journal, April 2012

  • McDonald, Thomas M.; Lee, Woo Ram; Mason, Jarad A.
  • Journal of the American Chemical Society, Vol. 134, Issue 16, p. 7056-7065
  • DOI: 10.1021/ja300034j

CO 2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent
journal, December 2016

  • Seipp, Charles A.; Williams, Neil J.; Kidder, Michelle K.
  • Angewandte Chemie International Edition, Vol. 56, Issue 4
  • DOI: 10.1002/anie.201610916

Aqueous Sulfate Separation by Sequestration of [(SO 4 ) 2 (H 2 O) 4 ] 4− Clusters within Highly Insoluble Imine-Linked Bis-Guanidinium Crystals
journal, December 2015

  • Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.
  • Chemistry - A European Journal, Vol. 22, Issue 6
  • DOI: 10.1002/chem.201504651

Moisture Swing Sorbent for Carbon Dioxide Capture from Ambient Air
journal, August 2011

  • Wang, Tao; Lackner, Klaus S.; Wright, Allen
  • Environmental Science & Technology, Vol. 45, Issue 15
  • DOI: 10.1021/es201180v

CO2 Capture Using Phase-Changing Sorbents
journal, March 2012

  • Perry, Robert J.; Wood, Benjamin R.; Genovese, Sarah
  • Energy & Fuels, Vol. 26, Issue 4, p. 2528-2538
  • DOI: 10.1021/ef300079w

Amine-Based Nanofibrillated Cellulose As Adsorbent for CO 2 Capture from Air
journal, October 2011

  • Gebald, Christoph; Wurzbacher, Jan Andre; Tingaut, Philippe
  • Environmental Science & Technology, Vol. 45, Issue 20
  • DOI: 10.1021/es202223p

The urgency of the development of CO2 capture from ambient air
text, January 2012

  • Lackner, Klaus S.; Brennan, Sarah; Matter, Juerg M.
  • Columbia University
  • DOI: 10.7916/d8348w3g

Carbon Dioxide Capture from Atmospheric Air Using Sodium Hydroxide Spray
journal, April 2008

  • Stolaroff, Joshuah K.; Keith, David W.; Lowry, Gregory V.
  • Environmental Science & Technology, Vol. 42, Issue 8
  • DOI: 10.1021/es702607w

Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks
journal, February 2013

  • Lu, Weigang; Sculley, Julian P.; Yuan, Daqiang
  • The Journal of Physical Chemistry C, Vol. 117, Issue 8
  • DOI: 10.1021/jp311512q

Characterization of kinetic limitations to atmospheric CO 2 capture by solid sorbent : Characterization of kinetic limitations to atmospheric CO2 capture by solid sorbent
journal, September 2015

  • Wang, Tao; Liu, Jun; Lackner, Klaus S.
  • Greenhouse Gases: Science and Technology, Vol. 6, Issue 1
  • DOI: 10.1002/ghg.1535

CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor
journal, February 2009


Direct Capture of CO2 from Ambient Air
journal, August 2016

  • Sanz-Pérez, Eloy S.; Murdock, Christopher R.; Didas, Stephanie A.
  • Chemical Reviews, Vol. 116, Issue 19, p. 11840-11876
  • DOI: 10.1021/acs.chemrev.6b00173

Process design and energy requirements for the capture of carbon dioxide from air
journal, December 2006

  • Baciocchi, Renato; Storti, Giuseppe; Mazzotti, Marco
  • Chemical Engineering and Processing: Process Intensification, Vol. 45, Issue 12, p. 1047-1058
  • DOI: 10.1016/j.cep.2006.03.015

Kinetics of the Reversible Reaction of CO 2 (aq) and HCO 3 with Sarcosine Salt in Aqueous Solution
journal, October 2012

  • Xiang, Qunyang; Fang, Mengxiang; Yu, Hai
  • The Journal of Physical Chemistry A, Vol. 116, Issue 42
  • DOI: 10.1021/jp305715q

A CALORIMETRIC STUDY OF THE HEAT OF IONIZATION OF WATER AT 25° 1a
journal, December 1963

  • Hale, John D.; Izatt, Reed M.; Christensen, James J.
  • The Journal of Physical Chemistry, Vol. 67, Issue 12
  • DOI: 10.1021/j100806a025

The Solubility of Carbon Dioxide in Water at Low Pressure
journal, November 1991

  • Carroll, John J.; Slupsky, John D.; Mather, Alan E.
  • Journal of Physical and Chemical Reference Data, Vol. 20, Issue 6
  • DOI: 10.1063/1.555900

Committed warming inferred from observations
journal, July 2017

  • Mauritsen, Thorsten; Pincus, Robert
  • Nature Climate Change, Vol. 7, Issue 9
  • DOI: 10.1038/nclimate3357

Works referencing / citing this record:

Dispersed Nickel Cobalt Oxyphosphide Nanoparticles Confined in Multichannel Hollow Carbon Fibers for Photocatalytic CO 2 Reduction
journal, November 2019

  • Wang, Yan; Wang, Sibo; Lou, Xiong Wen (David)
  • Angewandte Chemie, Vol. 131, Issue 48
  • DOI: 10.1002/ange.201909707

Fundamentals and applications of photocatalytic CO2 methanation
journal, July 2019


Dispersed Nickel Cobalt Oxyphosphide Nanoparticles Confined in Multichannel Hollow Carbon Fibers for Photocatalytic CO 2 Reduction
journal, November 2019

  • Wang, Yan; Wang, Sibo; Lou, Xiong Wen (David)
  • Angewandte Chemie International Edition, Vol. 58, Issue 48
  • DOI: 10.1002/anie.201909707

CO 2 absorption from simulated flue gas in a bubble column
journal, February 2019


Simulation of carbon dioxide absorption by amino acids in two-phase batch and bubble column reactors
journal, February 2019


Photoelectrochemical CO 2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO 2 /Au photocathodes with low onset potentials
journal, January 2019

  • Li, Chengcheng; Wang, Tuo; Liu, Bin
  • Energy & Environmental Science, Vol. 12, Issue 3
  • DOI: 10.1039/c8ee02768d

Fundamentals and applications of photocatalytic CO2 methanation
journal, July 2019


Recent advances in self-assembled amidinium and guanidinium frameworks
journal, January 2019