DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pressure-Induced Polymerization of LiN(CN)2

Abstract

The high-pressure behavior of lithium dicyanamide (LiN(CN)2) was studied with in situ Raman and infrared (IR) spectroscopies, and synchrotron angle-dispersive powder X-ray diffraction (PXRD) in a diamond anvil cell (DAC) to 22 GPa. The fundamental vibrational modes associated with molecular units were assigned using a combination of experimental data and density functional perturbation theory. Some low-frequency modes were observed for the first time. On the basis of spectroscopic and diffraction data, we suggest a polymorphic phase transformation at ~8 GPa, wherein dicyanamide ions remain as discrete molecular species. Above ca. 18 GPa, dicyanamide units polymerize, forming a largely disordered network, and the extent of polymerization may be increased by annealing at elevated temperature. The polymerized product consists of tricyanomelaminate-like groups containing sp2-hybidized carbon–nitrogen bonds and exhibits a visible absorption edge near 540 nm. Lastly, the product is recoverable to ambient conditions but is not stable in air/moisture.

Authors:
 [1];  [2];  [3];  [3];  [2];  [1];  [4]
  1. Pennsylvania State Univ., University Park, PA (United States)
  2. Carnegie Inst. of Washington, Washington, DC (United States); Center for High Pressure Science and Technology Advanced Research, Shanghai (China)
  3. Naval Research Lab., Washington, DC (United States)
  4. Carnegie Inst. of Washington, Washington, DC (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF); Defense Advanced Research Projects Agency (DARPA)
OSTI Identifier:
1338990
Grant/Contract Number:  
AC02-06CH11357; U1530402; FG02-99ER45775; NA0001974; 31P4Q- 3-I-0005
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 120; Journal Issue: 47; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
ENGLISH
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; polymerization; lattices; physical and chemical processes; lithium; materials

Citation Formats

Keefer, Derek W., Gou, Huiyang, Purdy, Andrew P., Epshteyn, Albert, Kim, Duck Young, Badding, John V., and Strobel, Timothy A. Pressure-Induced Polymerization of LiN(CN)2. United States: N. p., 2016. Web. doi:10.1021/acs.jpca.6b06780.
Keefer, Derek W., Gou, Huiyang, Purdy, Andrew P., Epshteyn, Albert, Kim, Duck Young, Badding, John V., & Strobel, Timothy A. Pressure-Induced Polymerization of LiN(CN)2. United States. https://doi.org/10.1021/acs.jpca.6b06780
Keefer, Derek W., Gou, Huiyang, Purdy, Andrew P., Epshteyn, Albert, Kim, Duck Young, Badding, John V., and Strobel, Timothy A. Fri . "Pressure-Induced Polymerization of LiN(CN)2". United States. https://doi.org/10.1021/acs.jpca.6b06780. https://www.osti.gov/servlets/purl/1338990.
@article{osti_1338990,
title = {Pressure-Induced Polymerization of LiN(CN)2},
author = {Keefer, Derek W. and Gou, Huiyang and Purdy, Andrew P. and Epshteyn, Albert and Kim, Duck Young and Badding, John V. and Strobel, Timothy A.},
abstractNote = {The high-pressure behavior of lithium dicyanamide (LiN(CN)2) was studied with in situ Raman and infrared (IR) spectroscopies, and synchrotron angle-dispersive powder X-ray diffraction (PXRD) in a diamond anvil cell (DAC) to 22 GPa. The fundamental vibrational modes associated with molecular units were assigned using a combination of experimental data and density functional perturbation theory. Some low-frequency modes were observed for the first time. On the basis of spectroscopic and diffraction data, we suggest a polymorphic phase transformation at ~8 GPa, wherein dicyanamide ions remain as discrete molecular species. Above ca. 18 GPa, dicyanamide units polymerize, forming a largely disordered network, and the extent of polymerization may be increased by annealing at elevated temperature. The polymerized product consists of tricyanomelaminate-like groups containing sp2-hybidized carbon–nitrogen bonds and exhibits a visible absorption edge near 540 nm. Lastly, the product is recoverable to ambient conditions but is not stable in air/moisture.},
doi = {10.1021/acs.jpca.6b06780},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 47,
volume = 120,
place = {United States},
year = {Fri Oct 28 00:00:00 EDT 2016},
month = {Fri Oct 28 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Highest optical gap tetrahedral amorphous carbon
journal, March 2002


Prediction of New Low Compressibility Solids
journal, August 1989


Low-Compressibility Carbon Nitrides
journal, January 1996


Cubic gauche-CN: A superhard metallic compound predicted via first-principles calculations
journal, July 2010

  • Wang, Xiaoli; Bao, Kuo; Tian, Fubo
  • The Journal of Chemical Physics, Vol. 133, Issue 4
  • DOI: 10.1063/1.3464479

The phase diagram and hardness of carbon nitrides
journal, May 2015

  • Dong, Huafeng; Oganov, Artem R.; Zhu, Qiang
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09870

g-C 3 N 4 and Others: Predicting New Nanoporous Carbon Nitride Planar Structures with Distinct Electronic Properties
journal, August 2015

  • Brito, W. H.; da Silva-Araújo, Joice; Chacham, H.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 34
  • DOI: 10.1021/acs.jpcc.5b02543

What are the possible structures for CNx compounds? The example of C3N
journal, July 2000


Carbon nitride: Ab initio investigation of carbon-rich phases
journal, November 2009


Catalyst-Free Growth of Three-Dimensional Graphene Flakes and Graphene/g-C 3 N 4 Composite for Hydrocarbon Oxidation
journal, February 2016


Graphene quantum dots: an emerging material for energy-related applications and beyond
journal, January 2012

  • Zhang, Zhipan; Zhang, Jing; Chen, Nan
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22982j

Three-dimensional graphene materials: preparation, structures and application in supercapacitors
journal, January 2014

  • Cao, Xiehong; Yin, Zongyou; Zhang, Hua
  • Energy Environ. Sci., Vol. 7, Issue 6
  • DOI: 10.1039/C4EE00050A

Pressure-induced polymerization of P(CN)3
journal, May 2015

  • Gou, Huiyang; Yonke, Brendan L.; Epshteyn, Albert
  • The Journal of Chemical Physics, Vol. 142, Issue 19
  • DOI: 10.1063/1.4919640

Benzene-derived carbon nanothreads
journal, September 2014

  • Fitzgibbons, Thomas C.; Guthrie, Malcolm; Xu, En-shi
  • Nature Materials, Vol. 14, Issue 1
  • DOI: 10.1038/nmat4088

FT-IR Study of the Solid State Polymerization of Acetylene under Pressure
journal, January 1996

  • Sakashita, Mami; Yamawaki, Hiroshi; Aoki, Katsutoshi
  • The Journal of Physical Chemistry, Vol. 100, Issue 23
  • DOI: 10.1021/jp960306l

Raman study of the solid‐state polymerization of acetylene at high pressure
journal, July 1988

  • Aoki, K.; Usuba, S.; Yoshida, M.
  • The Journal of Chemical Physics, Vol. 89, Issue 1
  • DOI: 10.1063/1.455441

Synthesis and characterization of the rare-earth dicyanamides Ln[N(CN)2]3 with Ln=La, Ce, Pr, Nd, Sm, and Eu
journal, January 2005

  • Jürgens, Barbara; Irran, Elisabeth; Schnick, Wolfgang
  • Journal of Solid State Chemistry, Vol. 178, Issue 1
  • DOI: 10.1016/j.jssc.2004.10.030

Structure of caesium dicyanamide
journal, October 1991

  • Starynowicz, P.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 47, Issue 10
  • DOI: 10.1107/S0108270191003700

Synthesis, Crystal Structure, and Vibrational Spectra of the Anhydrous Lithium Dicyanamide Li[N(CN) 2 ]: Anhydrous Lithium Dicyanamide Li[N(CN) 2 ]
journal, March 2014

  • Reckeweg, Olaf; DiSalvo, Francis J.; Schulz, Armin
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 640, Issue 5
  • DOI: 10.1002/zaac.201300586

Synthesis, crystal structure, vibrational spectroscopy, and thermal behaviour of lead dicyanamide Pb[N(CN)2]2
journal, May 2002


Hard magnets based on transition metal complexes with the dicyanamide anion, {N(CN)2}-,
journal, January 1998

  • Kurmoo, Mohamedally; Kepert, Cameron J.
  • New Journal of Chemistry, Vol. 22, Issue 12
  • DOI: 10.1039/a803165g

The Trimerization of Nitriles at High Pressures
journal, November 1952

  • Cairns, T. L.; Larchar, A. W.; McKusick, B. C.
  • Journal of the American Chemical Society, Vol. 74, Issue 22
  • DOI: 10.1021/ja01142a028

Lithium dicyanamide, its reactions with cyanuric chloride, and the crystal structures of LiN(CN)2(MeCN)2 and LiCN(C5H5N)2
journal, January 1997


Thermal Conversion of Guanylurea Dicyanamide into Graphitic Carbon Nitride via Prototype CN x Precursors
journal, June 2005

  • Lotsch, Bettina V.; Schnick, Wolfgang
  • Chemistry of Materials, Vol. 17, Issue 15
  • DOI: 10.1021/cm050350q

Shock-compression of C–N precursors for possible synthesis of β-C3N4
journal, July 2001


Solid state polymerization of cyanoacetylene into conjugated linear chains under pressure
journal, July 1989

  • Aoki, K.; Kakudate, Y.; Yoshida, M.
  • The Journal of Chemical Physics, Vol. 91, Issue 2
  • DOI: 10.1063/1.457130

Synthesis of a bulk crystalline phase of carbon nitride
journal, September 1998

  • Dymont, V. P.; Nekrashevich, E. M.; Starchenko, I. M.
  • Journal of Experimental and Theoretical Physics Letters, Vol. 68, Issue 6
  • DOI: 10.1134/1.567896

Phonons and related crystal properties from density-functional perturbation theory
journal, July 2001

  • Baroni, Stefano; de Gironcoli, Stefano; Dal Corso, Andrea
  • Reviews of Modern Physics, Vol. 73, Issue 2
  • DOI: 10.1103/RevModPhys.73.515

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions
journal, January 1986

  • Mao, H. K.; Xu, J.; Bell, P. M.
  • Journal of Geophysical Research, Vol. 91, Issue B5, p. 4673-4676
  • DOI: 10.1029/JB091iB05p04673

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

High-density phases of ZnO: Structural and compressive parameters
journal, December 1998


Raman and Infrared Spectra of the Dicyanamide Ion
book, January 1963


Syntheses of Sublimable Carbon Nitride Materials
journal, May 1998


Optical properties and electronic structure of amorphous Ge and Si
journal, January 1968


Interpretation of Raman spectra of disordered and amorphous carbon
journal, May 2000


Adsorption and Displacement of Melamine at the Ag/Electrolyte Interface Probed by Surface-Enhanced Raman Microprobe Spectroscopy
journal, January 1996

  • Koglin, Eckhard; Kip, Bert J.; Meier, Robert J.
  • The Journal of Physical Chemistry, Vol. 100, Issue 12
  • DOI: 10.1021/jp953208t

Synthesis of nanocrystalline nitrogen-rich carbon nitride powders at high pressure
journal, December 2002


Giant negative linear compressibility in zinc dicyanoaurate
journal, January 2013

  • Cairns, Andrew B.; Catafesta, Jadna; Levelut, Claire
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3551

Negative Linear Compressibility of a Metal–Organic Framework
journal, July 2012

  • Li, Wei; Probert, Michael R.; Kosa, Monica
  • Journal of the American Chemical Society, Vol. 134, Issue 29
  • DOI: 10.1021/ja305196u

Large negative linear compressibility of Ag3[Co(CN)6]
journal, November 2008

  • Goodwin, A. L.; Keen, D. A.; Tucker, M. G.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 48
  • DOI: 10.1073/pnas.0804789105

PASCal : a principal axis strain calculator for thermal expansion and compressibility determination
journal, November 2012


Materials with Negative Compressibilities in One or More Dimensions
journal, March 1998


Pressure-Induced Amorphization and Porosity Modification in a Metal−Organic Framework
journal, December 2009

  • Chapman, Karena W.; Halder, Gregory J.; Chupas, Peter J.
  • Journal of the American Chemical Society, Vol. 131, Issue 48
  • DOI: 10.1021/ja908415z

K 3 Fe(CN) 6 : Pressure-Induced Polymerization and Enhanced Conductivity
journal, November 2013

  • Li, Kuo; Zheng, Haiyan; Ivanov, Ilia N.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 46
  • DOI: 10.1021/jp407429z

High-Pressure Synthesis of sp 2 -Bonded Carbon Nitrides
journal, January 1996

  • Nesting, David C.; Badding, John V.
  • Chemistry of Materials, Vol. 8, Issue 7
  • DOI: 10.1021/cm9601289

Kinetics of a pressure-induced polymerization reaction of cyanogen
journal, December 1986

  • Yoo, Choong Shik; Nicol, Malcolm
  • The Journal of Physical Chemistry, Vol. 90, Issue 25
  • DOI: 10.1021/j100283a029

Pressure-induced phase transition and polymerization of tetracyanoethylene (TCNE)
journal, March 2013

  • Tomasino, Dane; Chen, Jing-Yin; Kim, Minesob
  • The Journal of Chemical Physics, Vol. 138, Issue 9
  • DOI: 10.1063/1.4793710

Polymerization of Tetracyanoethylene under Pressure
journal, December 2012

  • Khazaei, Mohammad; Arai, Masao; Sasaki, Taizo
  • The Journal of Physical Chemistry C, Vol. 117, Issue 1
  • DOI: 10.1021/jp310747v

Infrared study of phase transition and chemical reaction in tetracyanoethylene under high pressure
journal, October 1992


From Triazines to Heptazines:  Novel Nonmetal Tricyanomelaminates as Precursors for Graphitic Carbon Nitride Materials
journal, April 2006

  • Lotsch, Bettina V.; Schnick, Wolfgang
  • Chemistry of Materials, Vol. 18, Issue 7
  • DOI: 10.1021/cm052342f

Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine
journal, August 2008


Raman and infrared modes of hydrogenated amorphous carbon nitride
journal, May 2001

  • Rodil, S. E.; Ferrari, A. C.; Robertson, J.
  • Journal of Applied Physics, Vol. 89, Issue 10
  • DOI: 10.1063/1.1365076

Works referencing / citing this record: