skip to main content

DOE PAGESDOE PAGES

Title: Pressure-induced polymerization of P(CN) 3

Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN)3, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder Xray diffraction (PXRD) measurements taken during compression show that molecular P(CN)3 is highly compressible with a bulk modulus of 10.0±0.3 GPa and polymerizes into an amorphous solid above ~10.0 GPa. Raman and infrared (IR) spectra, together with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp2 character, similar to known carbon nitrides, resulting in a novel PCN polymeric phase, which is recoverable to ambient pressure.
Authors:
 [1] ;  [2] ;  [2] ;  [1] ;  [1] ;  [1]
  1. Carnegie Inst. of Washington, Argonne, IL (United States). Geophysical Lab.
  2. Naval Research Lab. (NRL), Washington, DC (United States)
Publication Date:
Grant/Contract Number:
NA0002006
Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 142; Journal Issue: 19; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Research Org:
Carnegie Inst. of Washington, Argonne, IL (United States). Geophysical Lab.
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
OSTI Identifier:
1338321
Alternate Identifier(s):
OSTI ID: 1338321