DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas

Abstract

Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparative studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.

Authors:
 [1];  [1];  [1];  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States). Chemical and Materials Science Center
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1290786
Report Number(s):
NREL/JA-5900-66914
Journal ID: ISSN 0013-4651
Grant/Contract Number:  
AC36-08GO28308; SC0007471
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 163; Journal Issue: 11; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; electrocatalysis; electrochemical surface area; electrolysis; iridium

Citation Formats

Alia, Shaun M., Hurst, Katherine E., Kocha, Shyam S., and Pivovar, Bryan S. Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas. United States: N. p., 2016. Web. doi:10.1149/2.0071611jes.
Alia, Shaun M., Hurst, Katherine E., Kocha, Shyam S., & Pivovar, Bryan S. Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas. United States. https://doi.org/10.1149/2.0071611jes
Alia, Shaun M., Hurst, Katherine E., Kocha, Shyam S., and Pivovar, Bryan S. Thu . "Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas". United States. https://doi.org/10.1149/2.0071611jes. https://www.osti.gov/servlets/purl/1290786.
@article{osti_1290786,
title = {Mercury Underpotential Deposition to Determine Iridium and Iridium Oxide Electrochemical Surface Areas},
author = {Alia, Shaun M. and Hurst, Katherine E. and Kocha, Shyam S. and Pivovar, Bryan S.},
abstractNote = {Determining the surface areas of electrocatalysts is critical for separating the key properties of area-specific activity and electrochemical surface area from mass activity. Hydrogen underpotential deposition and carbon monoxide oxidation are typically used to evaluate iridium (Ir) surface areas, but are ineffective on oxides and can be sensitive to surface oxides formed on Ir metals. Mercury underpotential deposition is presented in this study as an alternative, able to produce reasonable surface areas on Ir and Ir oxide nanoparticles, and able to produce similar surface areas prior to and following characterization in oxygen evolution. Reliable electrochemical surface areas allow for comparative studies of different catalyst types and the characterization of advanced oxygen evolution catalysts. Lastly, they also enable the study of catalyst degradation in durability testing, both areas of increasing importance within electrolysis and electrocatalysis.},
doi = {10.1149/2.0071611jes},
journal = {Journal of the Electrochemical Society},
number = 11,
volume = 163,
place = {United States},
year = {Thu Jun 02 00:00:00 EDT 2016},
month = {Thu Jun 02 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 59 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Kinetics of oxygen evolution and dissolution on platinum electrodes
journal, July 1966


Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes
journal, January 2010

  • Sheng, Wenchao; Gasteiger, Hubert A.; Shao-Horn, Yang
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3483106

Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir–Ni Oxide Catalysts for Electrochemical Water Splitting (OER)
journal, September 2015

  • Reier, Tobias; Pawolek, Zarina; Cherevko, Serhiy
  • Journal of the American Chemical Society, Vol. 137, Issue 40
  • DOI: 10.1021/jacs.5b07788

Oxide-Supported IrNiO x Core-Shell Particles as Efficient, Cost-Effective, and Stable Catalysts for Electrochemical Water Splitting
journal, January 2015

  • Nong, Hong Nhan; Oh, Hyung-Suk; Reier, Tobias
  • Angewandte Chemie International Edition, Vol. 54, Issue 10
  • DOI: 10.1002/anie.201411072

Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials
journal, July 2012

  • Reier, Tobias; Oezaslan, Mehtap; Strasser, Peter
  • ACS Catalysis, Vol. 2, Issue 8
  • DOI: 10.1021/cs3003098

Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers
journal, January 2015

  • Oh, Hyung-Suk; Nong, Hong Nhan; Reier, Tobias
  • Chemical Science, Vol. 6, Issue 6
  • DOI: 10.1039/C5SC00518C

IrO2/Nb–TiO2 electrocatalyst for oxygen evolution reaction in acidic medium
journal, April 2014


Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium
journal, January 2012

  • Hu, Wei; Wang, Yaqin; Hu, Xiaohong
  • Journal of Materials Chemistry, Vol. 22, Issue 13
  • DOI: 10.1039/c2jm16506f

Fine-tuning the activity of oxygen evolution catalysts: The effect of oxidation pre-treatment on size-selected Ru nanoparticles
journal, March 2016


Bimetallic Ru Electrocatalysts for the OER and Electrolytic Water Splitting in Acidic Media
journal, January 2010

  • Forgie, Rhys; Bugosh, Greg; Neyerlin, K. C.
  • Electrochemical and Solid-State Letters, Vol. 13, Issue 4
  • DOI: 10.1149/1.3290735

The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80°C in acid solutions
journal, June 1978


Electrochemical Equilibria
book, January 1973

  • Pourbaix, Marcel; Staehle, Roger W.; Pourbaix, Marcel
  • Lectures on Electrochemical Corrosion, p 83-183
  • DOI: 10.1007/978-1-4684-1806-4_4

Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction
journal, September 2015


Hydrogen adsorption on platinum, iridium and rhodium electrodes at reduced temperatures and the determination of real surface area
journal, January 1974


Hydrogen adsorption on iridium single-crystal surfaces
journal, February 1990


Iridium Oxide Film Electrodes for Anodic Stripping Voltammetry
journal, October 2008

  • Hull, Ewa; Piech, Robert; Kubiak, Władysław W.
  • Electroanalysis, Vol. 20, Issue 19
  • DOI: 10.1002/elan.200804295

Deposition and Stripping Properties of Mercury on Iridium Electrodes
journal, January 1986

  • Kounaves, S. P.
  • Journal of The Electrochemical Society, Vol. 133, Issue 12
  • DOI: 10.1149/1.2108457

Solid-state Reactions of Mercury with Pure Noble Metals Part 2. Mercury–iridium system
journal, January 2002

  • Fertonani, F. L.; Milaré, E.; Benedetti, A. V.
  • Journal of Thermal Analysis and Calorimetry, Vol. 67, Issue 2, p. 403-410
  • DOI: 10.1023/A:1013943623673

An iridium based mercury film electrode
journal, January 1988

  • Kounaves, S. P.; Buffle, J.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 239, Issue 1-2
  • DOI: 10.1016/0022-0728(88)80273-0

Calculating the Electrochemically Active Surface Area of Iridium Oxide in Operating Proton Exchange Membrane Electrolyzers
journal, January 2015

  • Zhao, Shuai; Yu, Haoran; Maric, Radenka
  • Journal of The Electrochemical Society, Vol. 162, Issue 12
  • DOI: 10.1149/2.0211512jes

Experimental Methods for Quantifying the Activity of Platinum Electrocatalysts for the Oxygen Reduction Reaction
journal, August 2010

  • Garsany, Yannick; Baturina, Olga A.; Swider-Lyons, Karen E.
  • Analytical Chemistry, Vol. 82, Issue 15
  • DOI: 10.1021/ac100306c

Influence of iridium oxide loadings on the performance of PEM water electrolysis cells: Part I–Pure IrO 2 -based anodes
journal, March 2016


“Inner” and “outer” active surface of RuO2 electrodes
journal, January 1990


Ruthenium dioxide-based film electrodes: III. Effect of chemical composition and surface morphology on oxygen evolution in acid solutions
journal, March 1978

  • Lodi, G.; Sivieri, E.; De Battisti, A.
  • Journal of Applied Electrochemistry, Vol. 8, Issue 2
  • DOI: 10.1007/BF00617671

Electrocatalysis in water electrolysis with solid polymer electrolyte
journal, November 2003


Impedance of hydrated iridium oxide electrodes
journal, June 1989


In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes
journal, December 2002

  • Weiland, J. D.; Anderson, D. J.; Humayun, M. S.
  • IEEE Transactions on Biomedical Engineering, Vol. 49, Issue 12
  • DOI: 10.1109/TBME.2002.805487

Potential-Biased, Asymmetric Waveforms for Charge-Injection With Activated Iridium Oxide (AIROF) Neural Stimulation Electrodes
journal, February 2006

  • Cogan, S. F.; Troyk, P. R.; Ehrlich, J.
  • IEEE Transactions on Biomedical Engineering, Vol. 53, Issue 2
  • DOI: 10.1109/TBME.2005.862572

Charge Injection Properties of Thermally-Prepared Iridium Oxide Films
journal, January 1985

  • Robblee, Lois S.; Mangaudis, Michael J.; Lasinsky, Ellen D.
  • MRS Proceedings, Vol. 55
  • DOI: 10.1557/PROC-55-303

Neural Stimulation and Recording Electrodes
journal, August 2008


Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys
journal, January 1994

  • Gasteiger, Hubert A.; Markovic, Nenad; Ross, Philip N.
  • The Journal of Physical Chemistry, Vol. 98, Issue 2
  • DOI: 10.1021/j100053a042

Mechanism of Carbon Monoxide Electrooxidation on Monocrystalline Gold Surfaces:  Identification of a Hydroxycarbonyl Intermediate
journal, January 1996

  • Edens, Gregory J.; Hamelin, Antoinette; Weaver, Michael J.
  • The Journal of Physical Chemistry, Vol. 100, Issue 6
  • DOI: 10.1021/jp9525604

Adsorption of carbon monoxide on a smooth palladium electrode: an in-situ infrared spectroscopic study
journal, May 1984

  • Kunimatsu, Keiji
  • The Journal of Physical Chemistry, Vol. 88, Issue 11
  • DOI: 10.1021/j150655a005

Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode
journal, November 2000


Works referencing / citing this record:

Synthesis of Iridium Nanocatalysts for Water Oxidation in Acid: Effect of the Surfactant
journal, January 2020

  • Arminio‐Ravelo, José Alejandro; Quinson, Jonathan; Pedersen, Mads A.
  • ChemCatChem, Vol. 12, Issue 5
  • DOI: 10.1002/cctc.201902190

Electrolyte Effects on the Electrocatalytic Performance of Iridium‐Based Nanoparticles for Oxygen Evolution in Rotating Disc Electrodes
journal, November 2019

  • Arminio‐Ravelo, José Alejandro; Jensen, Anders W.; Jensen, Kim D.
  • ChemPhysChem, Vol. 20, Issue 22
  • DOI: 10.1002/cphc.201900902

Connected iridium nanoparticle catalysts coated onto silica with high density for oxygen evolution in polymer electrolyte water electrolysis
journal, January 2020

  • Sugita, Yoshiyuki; Tamaki, Takanori; Kuroki, Hidenori
  • Nanoscale Advances, Vol. 2, Issue 1
  • DOI: 10.1039/c9na00568d

Iridium Oxygen Evolution Activity and Durability Baselines in Rotating Disk Electrode Half-Cells
journal, January 2019

  • Alia, Shaun M.; Anderson, Grace C.
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.0731904jes

The Roles of Oxide Growth and Sub-Surface Facets in Oxygen Evolution Activity of Iridium and Its Impact on Electrolysis
journal, January 2019

  • Alia, Shaun M.; Ha, Mai-Anh; Anderson, Grace C.
  • Journal of The Electrochemical Society, Vol. 166, Issue 15
  • DOI: 10.1149/2.0771915jes

Analysis of Inkjet Printed Catalyst Coated Membranes for Polymer Electrolyte Electrolyzers
journal, January 2018

  • Mandal, Manas; Valls, Antoni; Gangnus, Niklas
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.1101807jes

Polymer Electrolyte Water Electrolysis: Correlating Performance and Porous Transport Layer Structure: Part II. Electrochemical Performance Analysis
journal, January 2019

  • Schuler, Tobias; Schmidt, Thomas J.; Büchi, Felix N.
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.1241908jes

Synthesis of Iridium Nanocatalysts for Water Oxidation in Acid: Effect of the Surfactant
text, January 2020

  • Arminio‐Ravelo, José Alejandro; Quinson, Jonathan; Pedersen, Mads A.
  • WILEY-VCH
  • DOI: 10.48350/140810