DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

Abstract

The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. Furthermore, we bring these observations into a coherent framework and discuss their significance in the atmosphere.

Authors:
 [1];  [2];  [3];  [3];  [3];  [3];  [2];  [4];  [3];  [5];  [6];  [5];  [7]; ORCiD logo [8];  [3];  [9];  [10];  [11]; ORCiD logo [12];  [13] more »;  [6];  [14];  [15];  [14];  [11];  [3];  [16];  [13];  [3];  [3];  [17];  [18]; ORCiD logo [2];  [19];  [3];  [20];  [21];  [2];  [22];  [3];  [3];  [22];  [3];  [1];  [3];  [3];  [11];  [3];  [13];  [2];  [21];  [6];  [23];  [11];  [18];  [3];  [19];  [19];  [2];  [24];  [19];  [18]; ORCiD logo [25];  [26];  [6];  [9];  [2];  [27];  [5] « less
  1. Univ. of Helsinki, Helsinki (Finland). Dept. of Physics; Paul Scherrer Inst., Villigen (Switzerland). Laboratory of Atmospheric Chemistry
  2. Goethe-Univ. of Frankfurt, Frankfurt am Main (Germany). Inst. for Atmospheric and Environmental Sciences
  3. Univ. of Helsinki, Helsinki (Finland). Dept. of Physics
  4. Goethe-Univ. of Frankfurt, Frankfurt am Main (Germany). Inst. for Atmospheric and Environmental Sciences; CERN, Geneva (Switzerland)
  5. Univ. of Helsinki, Helsinki (Finland). Dept. of Physics, Inst. of Physics
  6. Paul Scherrer Inst., Villigen (Switzerland). Laboratory of Atmospheric Chemistry
  7. Univ. of Helsinki, Helsinki (Finland). Dept. of Physics; Univ. of Eastern Finland, Kuopio (Finland). Dept. of Applied Physics
  8. Univ. of Helsinki, Helsinki (Finland). Dept. of Physics, Inst. of Physics; CERN, Geneva (Switzerland)
  9. Stockholm Univ., Stockholm (Sweden). Dept. of Environmental Science and Analytical Chemistry (ACES) & Bolin Centre for Climate Research
  10. CERN, Geneva (Switzerland); Univ. of Lisbon and Univ. of Beira Interior, Lisbon (Portugal). SIM
  11. Univ. of Lisbon and Univ. of Beira Interior, Lisbon (Portugal). SIM
  12. Paul Scherrer Inst., Villigen (Switzerland). Laboratory of Atmospheric Chemistry; ETH Zurich, Zurich (Switzerland). Inst. for Atmospheric and Climate Science
  13. TechnikerstraBe 25, Innsbruck (Austria). Inst. for Ion Physics and Applied Physics
  14. California Inst. of Technology, Pasadena, CA (United States). Div. of Chemistry and Chemical Engineering
  15. Univ. of Leeds, Leeds (United Kingdom). School of Earth and Environment;Atmospheric Research Centre of Eastern Finland, Kuopio (Finland). Finnish Meteorological Inst.
  16. TechnikerstraBe 25, Innsbruck (Austria). Inst. for Ion Physics and Applied Physics; Ionicon Analytik GmbH, Innsbruck (Austria)
  17. Univ. of Helsinki, Helsinki (Finland). Dept. of Physics;Univ. of Eastern Finland, Kuopio (Finland). Dept. of Applied Physics
  18. Univ. of Eastern Finland, Kuopio (Finland). Dept. of Applied Physics
  19. Univ. of Vienna, Vienna (Austria). Faculty of Physics
  20. Univ. of Eastern Finland, Kuopio (Finland). Dept. of Applied Physics; Finnish Meteorological Inst., Helsinki (Finland)
  21. Univ. of Eastern Finland, Kuopio (Finland). Dept. of Applied Physics; Univ. of California, Irvine, CA (United States). Dept. of Chemistry
  22. CERN, Geneva (Switzerland)
  23. Leibniz Inst. for Tropospheric Research, Leipzig (Germany)
  24. Univ. of Helsinki, Helsinki (Finland). Dept. of Physics; Goethe-Univ. of Frankfurt, Frankfurt am Main (Germany). Inst. for Atmospheric and Environmental Sciences
  25. Carnegie Mellon Univ., Pittsburgh, PA (United States). Center for Atmospheric Particle Studies
  26. Univ. of Leeds, Leeds (United Kingdom). School of Earth and Environment
  27. Univ. of Helsinki, Helsinki (Finland). Dept. of Physics; Univ. of Eastern Finland, Kuopio (Finland). Dept. of Applied Physics; Atmospheric Research Centre of Eastern Finland, Kuopio (Finland). Finnish Meteorological Inst.; Aerodyne Research Inc., Billerica, MA (United States)
Publication Date:
Research Org.:
Univ. of California, Irvine, CA (United States)
Sponsoring Org.:
USDOE; CERN; European Union (EU); German Federal Ministry of Education and Research (BMBF); Swiss National Science Foundation (SNSF); Academy of Finland, Center of Excellence program; Austrian Science Fund (FWF); Portuguese Foundation for Science and Technology; Swedish Research Council (SRC); Russian Foundation for Basic Research; National Science Foundation (NSF); Vaisala foundation; EC Seventh Framework Programme (Marie Curie Initial Training Network 'CLOUD-ITN'); EC Seventh Framework Programme (Marie Curie Initial Training Network 'CLOUD-TRAIN'); EC Seventh Framework Programme (ERC grant 'ATMOGAIN'); EC Seventh Framework Programme (ERC grant 'MOCAPAF'; EC Seventh Framework Programme (ERC grant 'NANODYNAMITE'); EC Seventh Framework Programme (ERC grant 'ATMNUCLE')
OSTI Identifier:
1270918
Grant/Contract Number:  
SC0014469
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; ionization mass-spectrometry; phase sulfuric-acid; neutral cluster; boreal forest; cloud chamber; size range; nucleation; rates; ammonia; aerosol

Citation Formats

Lehtipalo, Katrianne, Rondo, Linda, Kontkanen, Jenni, Schobesberger, Siegfried, Jokinen, Tuija, Sarnela, Nina, Kürten, Andreas, Ehrhart, Sebastian, Franchin, Alessandro, Nieminen, Tuomo, Riccobono, Francesco, Sipilä, Mikko, Yli-Juuti, Taina, Duplissy, Jonathan, Adamov, Alexey, Ahlm, Lars, Almeida, Joao, Amorim, Antonio, Bianchi, Federico, Breitenlechner, Martin, Dommen, Josef, Downard, Andrew J., Dunne, Eimear M., Flagan, Richard C., Guida, Roberto, Hakala, Jani, Hansel, Armin, Jud, Werner, Kangasluoma, Juha, Kerminen, Veli-Matti, Keskinen, Helmi, Kim, Jaeseok, Kirkby, Jasper, Kupc, Agnieszka, Kupiainen-Maatta, Oona, Laaksonen, Ari, Lawler, Michael J., Leiminger, Markus, Mathot, Serge, Olenius, Tinja, Ortega, Ismael K., Onnela, Antti, Petaja, Tuukka, Praplan, Arnaud, Rissanen, Matti P., Ruuskanen, Taina, Santos, Filipe D., Schallhart, Simon, Schnitzhofer, Ralf, Simon, Mario, Smith, James N., Trostl, Jasmin, Tsagkogeorgas, Georgios, Tomé, António, Vaattovaara, Petri, Vehkamaki, Hanna, Vrtala, Aron E., Wagner, Paul E., Williamson, Christina, Wimmer, Daniela, Winkler, Paul M., Virtanen, Annele, Donahue, Neil M., Carslaw, Kenneth S., Baltensperger, Urs, Riipinen, Ilona, Curtius, Joachim, Worsnop, Douglas R., and Kulmala, Markku. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. United States: N. p., 2016. Web. doi:10.1038/ncomms11594.
Lehtipalo, Katrianne, Rondo, Linda, Kontkanen, Jenni, Schobesberger, Siegfried, Jokinen, Tuija, Sarnela, Nina, Kürten, Andreas, Ehrhart, Sebastian, Franchin, Alessandro, Nieminen, Tuomo, Riccobono, Francesco, Sipilä, Mikko, Yli-Juuti, Taina, Duplissy, Jonathan, Adamov, Alexey, Ahlm, Lars, Almeida, Joao, Amorim, Antonio, Bianchi, Federico, Breitenlechner, Martin, Dommen, Josef, Downard, Andrew J., Dunne, Eimear M., Flagan, Richard C., Guida, Roberto, Hakala, Jani, Hansel, Armin, Jud, Werner, Kangasluoma, Juha, Kerminen, Veli-Matti, Keskinen, Helmi, Kim, Jaeseok, Kirkby, Jasper, Kupc, Agnieszka, Kupiainen-Maatta, Oona, Laaksonen, Ari, Lawler, Michael J., Leiminger, Markus, Mathot, Serge, Olenius, Tinja, Ortega, Ismael K., Onnela, Antti, Petaja, Tuukka, Praplan, Arnaud, Rissanen, Matti P., Ruuskanen, Taina, Santos, Filipe D., Schallhart, Simon, Schnitzhofer, Ralf, Simon, Mario, Smith, James N., Trostl, Jasmin, Tsagkogeorgas, Georgios, Tomé, António, Vaattovaara, Petri, Vehkamaki, Hanna, Vrtala, Aron E., Wagner, Paul E., Williamson, Christina, Wimmer, Daniela, Winkler, Paul M., Virtanen, Annele, Donahue, Neil M., Carslaw, Kenneth S., Baltensperger, Urs, Riipinen, Ilona, Curtius, Joachim, Worsnop, Douglas R., & Kulmala, Markku. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. United States. https://doi.org/10.1038/ncomms11594
Lehtipalo, Katrianne, Rondo, Linda, Kontkanen, Jenni, Schobesberger, Siegfried, Jokinen, Tuija, Sarnela, Nina, Kürten, Andreas, Ehrhart, Sebastian, Franchin, Alessandro, Nieminen, Tuomo, Riccobono, Francesco, Sipilä, Mikko, Yli-Juuti, Taina, Duplissy, Jonathan, Adamov, Alexey, Ahlm, Lars, Almeida, Joao, Amorim, Antonio, Bianchi, Federico, Breitenlechner, Martin, Dommen, Josef, Downard, Andrew J., Dunne, Eimear M., Flagan, Richard C., Guida, Roberto, Hakala, Jani, Hansel, Armin, Jud, Werner, Kangasluoma, Juha, Kerminen, Veli-Matti, Keskinen, Helmi, Kim, Jaeseok, Kirkby, Jasper, Kupc, Agnieszka, Kupiainen-Maatta, Oona, Laaksonen, Ari, Lawler, Michael J., Leiminger, Markus, Mathot, Serge, Olenius, Tinja, Ortega, Ismael K., Onnela, Antti, Petaja, Tuukka, Praplan, Arnaud, Rissanen, Matti P., Ruuskanen, Taina, Santos, Filipe D., Schallhart, Simon, Schnitzhofer, Ralf, Simon, Mario, Smith, James N., Trostl, Jasmin, Tsagkogeorgas, Georgios, Tomé, António, Vaattovaara, Petri, Vehkamaki, Hanna, Vrtala, Aron E., Wagner, Paul E., Williamson, Christina, Wimmer, Daniela, Winkler, Paul M., Virtanen, Annele, Donahue, Neil M., Carslaw, Kenneth S., Baltensperger, Urs, Riipinen, Ilona, Curtius, Joachim, Worsnop, Douglas R., and Kulmala, Markku. Fri . "The effect of acid–base clustering and ions on the growth of atmospheric nano-particles". United States. https://doi.org/10.1038/ncomms11594. https://www.osti.gov/servlets/purl/1270918.
@article{osti_1270918,
title = {The effect of acid–base clustering and ions on the growth of atmospheric nano-particles},
author = {Lehtipalo, Katrianne and Rondo, Linda and Kontkanen, Jenni and Schobesberger, Siegfried and Jokinen, Tuija and Sarnela, Nina and Kürten, Andreas and Ehrhart, Sebastian and Franchin, Alessandro and Nieminen, Tuomo and Riccobono, Francesco and Sipilä, Mikko and Yli-Juuti, Taina and Duplissy, Jonathan and Adamov, Alexey and Ahlm, Lars and Almeida, Joao and Amorim, Antonio and Bianchi, Federico and Breitenlechner, Martin and Dommen, Josef and Downard, Andrew J. and Dunne, Eimear M. and Flagan, Richard C. and Guida, Roberto and Hakala, Jani and Hansel, Armin and Jud, Werner and Kangasluoma, Juha and Kerminen, Veli-Matti and Keskinen, Helmi and Kim, Jaeseok and Kirkby, Jasper and Kupc, Agnieszka and Kupiainen-Maatta, Oona and Laaksonen, Ari and Lawler, Michael J. and Leiminger, Markus and Mathot, Serge and Olenius, Tinja and Ortega, Ismael K. and Onnela, Antti and Petaja, Tuukka and Praplan, Arnaud and Rissanen, Matti P. and Ruuskanen, Taina and Santos, Filipe D. and Schallhart, Simon and Schnitzhofer, Ralf and Simon, Mario and Smith, James N. and Trostl, Jasmin and Tsagkogeorgas, Georgios and Tomé, António and Vaattovaara, Petri and Vehkamaki, Hanna and Vrtala, Aron E. and Wagner, Paul E. and Williamson, Christina and Wimmer, Daniela and Winkler, Paul M. and Virtanen, Annele and Donahue, Neil M. and Carslaw, Kenneth S. and Baltensperger, Urs and Riipinen, Ilona and Curtius, Joachim and Worsnop, Douglas R. and Kulmala, Markku},
abstractNote = {The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. Furthermore, we bring these observations into a coherent framework and discuss their significance in the atmosphere.},
doi = {10.1038/ncomms11594},
journal = {Nature Communications},
number = ,
volume = 7,
place = {United States},
year = {Fri May 20 00:00:00 EDT 2016},
month = {Fri May 20 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 103 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Impact of nucleation on global CCN
journal, January 2009

  • Merikanto, J.; Spracklen, D. V.; Mann, G. W.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 21
  • DOI: 10.5194/acp-9-8601-2009

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation
journal, August 2011

  • Kirkby, Jasper; Curtius, Joachim; Almeida, João
  • Nature, Vol. 476, Issue 7361
  • DOI: 10.1038/nature10343

Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
journal, October 2013

  • Almeida, João; Schobesberger, Siegfried; Kürten, Andreas
  • Nature, Vol. 502, Issue 7471
  • DOI: 10.1038/nature12663

Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules
journal, October 2013

  • Schobesberger, S.; Junninen, H.; Bianchi, F.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 43
  • DOI: 10.1073/pnas.1306973110

Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä
journal, January 2007

  • Riipinen, I.; Sihto, S. -L.; Kulmala, M.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 8
  • DOI: 10.5194/acp-7-1899-2007

Nanoparticles in boreal forest and coastal environment: a comparison of observations and implications of the nucleation mechanism
journal, January 2010

  • Lehtipalo, K.; Kulmala, M.; Sipilä, M.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 15
  • DOI: 10.5194/acp-10-7009-2010

Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei
journal, January 2012


The Role of Sulfuric Acid in Atmospheric Nucleation
journal, March 2010


Sub-10 nm particle growth by vapor condensation – effects of vapor molecule size and particle thermal speed
journal, January 2010

  • Nieminen, T.; Lehtinen, K. E. J.; Kulmala, M.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 20
  • DOI: 10.5194/acp-10-9773-2010

Evidence for the role of organics in aerosol particle formation under atmospheric conditions
journal, January 2010

  • Metzger, A.; Verheggen, B.; Dommen, J.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 15
  • DOI: 10.1073/pnas.0911330107

The contribution of organics to atmospheric nanoparticle growth
journal, June 2012

  • Riipinen, Ilona; Yli-Juuti, Taina; Pierce, Jeffrey R.
  • Nature Geoscience, Vol. 5, Issue 7
  • DOI: 10.1038/ngeo1499

Quantitative and time-resolved nanoparticle composition measurements during new particle formation
journal, January 2013

  • Bzdek, Bryan R.; Horan, Andrew J.; Pennington, M. Ross
  • Faraday Discussions, Vol. 165
  • DOI: 10.1039/c3fd00039g

Observations of aminium salts in atmospheric nanoparticles and possible climatic implications
journal, January 2010

  • Smith, J. N.; Barsanti, K. C.; Friedli, H. R.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 15
  • DOI: 10.1073/pnas.0912127107

The effect of trimethylamine on atmospheric nucleation involving H 2 SO 4
journal, January 2011

  • Erupe, M. E.; Viggiano, A. A.; Lee, S. -H.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 10
  • DOI: 10.5194/acp-11-4767-2011

Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer
journal, October 2012

  • Chen, M.; Titcombe, M.; Jiang, J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 46
  • DOI: 10.1073/pnas.1210285109

Uptake of neutral polar vapor molecules by charged clusters/particles: Enhancement due to dipole-charge interaction
journal, January 2003


Atmospheric new particle formation: real and apparent growth of neutral and charged particles
journal, January 2011

  • Leppä, J.; Anttila, T.; Kerminen, V. -M.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 10
  • DOI: 10.5194/acp-11-4939-2011

On-line determination of ammonia at low pptv mixing ratios in the CLOUD chamber
journal, January 2012

  • Bianchi, F.; Dommen, J.; Mathot, S.
  • Atmospheric Measurement Techniques, Vol. 5, Issue 7
  • DOI: 10.5194/amt-5-1719-2012

Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign
journal, January 2012

  • Praplan, A. P.; Bianchi, F.; Dommen, J.
  • Atmospheric Measurement Techniques, Vol. 5, Issue 9
  • DOI: 10.5194/amt-5-2161-2012

Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions
journal, October 2014

  • Kürten, Andreas; Jokinen, Tuija; Simon, Mario
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 42
  • DOI: 10.1073/pnas.1404853111

Toward Reconciling Measurements of Atmospherically Relevant Clusters by Chemical Ionization Mass Spectrometry and Mobility Classification/Vapor Condensation
journal, December 2014


Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF
journal, January 2012

  • Jokinen, T.; Sipilä, M.; Junninen, H.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 9
  • DOI: 10.5194/acp-12-4117-2012

Atmospheric Cluster Dynamics Code: a flexible method for solution of the birth-death equations
journal, January 2012

  • McGrath, M. J.; Olenius, T.; Ortega, I. K.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 5
  • DOI: 10.5194/acp-12-2345-2012

Photochemical aerosol formation from SO2: A theoretical analysis of smog chamber data
journal, December 1980


Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry
journal, March 2016

  • Rondo, L.; Ehrhart, S.; Kürten, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 6
  • DOI: 10.1002/2015JD023868

A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles
journal, May 2014


Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory: BINARY PARTICLE FORMATION EXPERIMENTS
journal, February 2016

  • Duplissy, J.; Merikanto, J.; Franchin, A.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 4
  • DOI: 10.1002/2015JD023539

Particle Size Magnifier for Nano-CN Detection
journal, March 2011


Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides
journal, October 2005


Remarks on Ion Generation for CPC Detection Efficiency Studies in Sub-3-nm Size Range
journal, May 2013


Performance of diethylene glycol-based particle counters in the sub-3 nm size range
journal, January 2013

  • Wimmer, D.; Lehtipalo, K.; Franchin, A.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 7
  • DOI: 10.5194/amt-6-1793-2013

A high-resolution mass spectrometer to measure atmospheric ion composition
journal, January 2010

  • Junninen, H.; Ehn, M.; Petäjä, T.
  • Atmospheric Measurement Techniques, Vol. 3, Issue 4
  • DOI: 10.5194/amt-3-1039-2010

Measurement of the gas phase concentration of H 2 SO 4 and methane sulfonic acid and estimates of H 2 SO 4 production and loss in the atmosphere
journal, May 1993

  • Eisele, F. L.; Tanner, D. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 98, Issue D5
  • DOI: 10.1029/93JD00031

Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry
journal, January 2011

  • Kürten, A.; Rondo, L.; Ehrhart, S.
  • Atmospheric Measurement Techniques, Vol. 4, Issue 3
  • DOI: 10.5194/amt-4-437-2011

Calibration of a Chemical Ionization Mass Spectrometer for the Measurement of Gaseous Sulfuric Acid
journal, February 2012

  • Kürten, Andreas; Rondo, Linda; Ehrhart, Sebastian
  • The Journal of Physical Chemistry A, Vol. 116, Issue 24
  • DOI: 10.1021/jp212123n

Gas-Phase Ozonolysis of Selected Olefins: The Yield of Stabilized Criegee Intermediate and the Reactivity toward SO 2
journal, September 2012

  • Berndt, Torsten; Jokinen, Tuija; Mauldin, Roy L.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 19
  • DOI: 10.1021/jz301158u

The effect of H 2 SO 4 – amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid
journal, January 2011

  • Kurtén, T.; Petäjä, T.; Smith, J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 6
  • DOI: 10.5194/acp-11-3007-2011

Atmospheric sub-3 nm particles at high altitudes
journal, January 2010

  • Mirme, S.; Mirme, A.; Minikin, A.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 2
  • DOI: 10.5194/acp-10-437-2010

O2+ as reagent ion in the PTR-MS instrument: Detection of gas-phase ammonia
journal, September 2007

  • Norman, Michael; Hansel, Armin; Wisthaler, Armin
  • International Journal of Mass Spectrometry, Vol. 265, Issue 2-3
  • DOI: 10.1016/j.ijms.2007.06.010

High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time
journal, June 2010

  • Graus, Martin; Müller, Markus; Hansel, Armin
  • Journal of the American Society for Mass Spectrometry, Vol. 21, Issue 6
  • DOI: 10.1016/j.jasms.2010.02.006

Characterisation of organic contaminants in the CLOUD chamber at CERN
journal, January 2014

  • Schnitzhofer, R.; Metzger, A.; Breitenlechner, M.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 7
  • DOI: 10.5194/amt-7-2159-2014

Growth rates of nucleation mode particles in Hyytiälä during 2003−2009: variation with particle size, season, data analysis method and ambient conditions
journal, January 2011

  • Yli-Juuti, T.; Nieminen, T.; Hirsikko, A.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 24
  • DOI: 10.5194/acp-11-12865-2011

Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth
journal, January 2012

  • Riccobono, F.; Rondo, L.; Sipilä, M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 20
  • DOI: 10.5194/acp-12-9427-2012

Growth rates of atmospheric molecular clusters based on appearance times and collision–evaporation fluxes: Growth by monomers
journal, December 2014


An Instrumental Comparison of Mobility and Mass Measurements of Atmospheric Small Ions
journal, March 2011

  • Ehn, Mikael; Junninen, Heikki; Schobesberger, Siegfried
  • Aerosol Science and Technology, Vol. 45, Issue 4
  • DOI: 10.1080/02786826.2010.547890

High resolution PTR-TOF: Quantification and formula confirmation of VOC in real time
journal, June 2010

  • Graus, Martin; Müller, Markus; Hansel, Armin
  • Journal of the American Society for Mass Spectrometry, Vol. 21, Issue 6
  • DOI: 10.1016/j.jasms.2010.02.006

Calibration of a Chemical Ionization Mass Spectrometer for the Measurement of Gaseous Sulfuric Acid
journal, February 2012

  • Kürten, Andreas; Rondo, Linda; Ehrhart, Sebastian
  • The Journal of Physical Chemistry A, Vol. 116, Issue 24
  • DOI: 10.1021/jp212123n

Particle Size Magnifier for Nano-CN Detection
journal, March 2011


Atmospheric new particle formation: real and apparent growth of neutral and charged particles
journal, January 2011

  • Leppä, J.; Anttila, T.; Kerminen, V. -M.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 10
  • DOI: 10.5194/acp-11-4939-2011

Characterisation of organic contaminants in the CLOUD chamber at CERN
journal, January 2014

  • Schnitzhofer, R.; Metzger, A.; Breitenlechner, M.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 7
  • DOI: 10.5194/amt-7-2159-2014

Works referencing / citing this record:

Formation Mechanism of Atmospheric Ammonium Bisulfate: Hydrogen-Bond-Promoted Nearly Barrierless Reactions of SO 3 with NH 3 and H 2 O
journal, February 2018


Mass spectrometry of aerosol particle analogues in molecular beam experiments
journal, November 2017

  • Fárník, Michal; Lengyel, Jozef
  • Mass Spectrometry Reviews, Vol. 37, Issue 5
  • DOI: 10.1002/mas.21554

Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change
journal, January 2019


Ion-mediated hydrogen-bond rearrangement through tunnelling in the iodide–dihydrate complex
journal, March 2019


Robust metric for quantifying the importance of stochastic effects on nanoparticle growth
journal, September 2018


Atmospheric gas-to-particle conversion: why NPF events are observed in megacities?
journal, January 2017

  • Kulmala, M.; Kerminen, V. -M.; Petäjä, T.
  • Faraday Discussions, Vol. 200
  • DOI: 10.1039/c6fd00257a

Kinetics of the reaction of CO 3 ˙ (H 2 O) n , n = 0, 1, 2, with nitric acid, a key reaction in tropospheric negative ion chemistry
journal, January 2018

  • van der Linde, Christian; Tang, Wai Kit; Siu, Chi-Kit
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 16
  • DOI: 10.1039/c7cp07773d

Hydration motifs of ammonium bisulfate clusters of relevance to atmospheric new particle formation
journal, January 2019


Integrated experimental and theoretical approach to probe the synergistic effect of ammonia in methanesulfonic acid reactions with small alkylamines
journal, January 2020

  • Perraud, Véronique; Xu, Jing; Gerber, R. Benny
  • Environmental Science: Processes & Impacts, Vol. 22, Issue 2
  • DOI: 10.1039/c9em00431a

Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range
journal, August 2018

  • Stolzenburg, Dominik; Fischer, Lukas; Vogel, Alexander L.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 37
  • DOI: 10.1073/pnas.1807604115

Chemical accuracy in modeling halide ion hydration from many-body representations
journal, January 2019


Atmospheric new particle formation and growth: review of field observations
journal, September 2018

  • Kerminen, Veli-Matti; Chen, Xuemeng; Vakkari, Ville
  • Environmental Research Letters, Vol. 13, Issue 10
  • DOI: 10.1088/1748-9326/aadf3c

Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors
journal, December 2018


Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity
journal, July 2018


Photochemistry of the Cloud Aqueous Phase: A Review
journal, January 2020


Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly oxidized organic molecules at a rural site in central Germany
journal, January 2016

  • Kürten, Andreas; Bergen, Anton; Heinritzi, Martin
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 19
  • DOI: 10.5194/acp-16-12793-2016

Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD
journal, January 2016

  • Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 21
  • DOI: 10.5194/acp-16-13601-2016

Measurements of sub-3 nm particles using a particle size magnifier in different environments: from clean mountain top to polluted megacities
journal, January 2017

  • Kontkanen, Jenni; Lehtipalo, Katrianne; Ahonen, Lauri
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 3
  • DOI: 10.5194/acp-17-2163-2017

Exploring the potential of nano-Köhler theory to describe the growth of atmospheric molecular clusters by organic vapors using cluster kinetics simulations
journal, January 2018

  • Kontkanen, Jenni; Olenius, Tinja; Kulmala, Markku
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 18
  • DOI: 10.5194/acp-18-13733-2018

Amines in boreal forest air at SMEAR II station in Finland
journal, January 2018

  • Hemmilä, Marja; Hellén, Heidi; Virkkula, Aki
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 9
  • DOI: 10.5194/acp-18-6367-2018

Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation
journal, January 2018

  • Frege, Carla; Ortega, Ismael K.; Rissanen, Matti P.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 1
  • DOI: 10.5194/acp-18-65-2018

Errors in nanoparticle growth rates inferred from measurements in chemically reacting aerosol systems
journal, January 2018


Rate enhancement in collisions of sulfuric acid molecules due to long-range intermolecular forces
journal, January 2019

  • Halonen, Roope; Zapadinsky, Evgeni; Kurtén, Theo
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 21
  • DOI: 10.5194/acp-19-13355-2019

Formation and growth of atmospheric nanoparticles in the eastern Mediterranean: results from long-term measurements and process simulations
journal, January 2019

  • Kalivitis, Nikos; Kerminen, Veli-Matti; Kouvarakis, Giorgos
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 4
  • DOI: 10.5194/acp-19-2671-2019

Temperature effects on sulfuric acid aerosol nucleation and growth: initial results from the TANGENT study
journal, January 2019

  • Tiszenkel, Lee; Stangl, Chris; Krasnomowitz, Justin
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 13
  • DOI: 10.5194/acp-19-8915-2019

Role of base strength, cluster structure and charge in sulfuric-acid-driven particle formation
journal, January 2019

  • Myllys, Nanna; Kubečka, Jakub; Besel, Vitus
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 15
  • DOI: 10.5194/acp-19-9753-2019

Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range
text, January 2018


Ion-mediated hydrogen-bond rearrangement through tunnelling in the iodide–dihydrate complex
text, January 2019


Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors
text, January 2018


Size resolved chemical composition of nanoparticles from reactions of sulfuric acid with ammonia and dimethylamine
journal, August 2018


Photochemistry of the Cloud Aqueous Phase: A Review
journal, January 2020


Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD
journal, January 2016

  • Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 21
  • DOI: 10.5194/acp-16-13601-2016

Role of base strength, cluster structure and charge in sulfuric-acid-driven particle formation
journal, January 2019

  • Myllys, Nanna; Kubečka, Jakub; Besel, Vitus
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 15
  • DOI: 10.5194/acp-19-9753-2019

New particle formation at urban and high-altitude remote sites in the south-eastern Iberian Peninsula
journal, November 2020

  • Casquero-Vera, Juan Andrés; Lyamani, Hassan; Dada, Lubna
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 22
  • DOI: 10.5194/acp-20-14253-2020

Influence of vegetation on occurrence and time distributions of regional new aerosol particle formation and growth
journal, February 2021

  • Salma, Imre; Thén, Wanda; Aalto, Pasi
  • Atmospheric Chemistry and Physics, Vol. 21, Issue 4
  • DOI: 10.5194/acp-21-2861-2021