DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrathin planar hematite film for solar photoelectrochemical water splitting

Abstract

Hematite holds promise for photoelectrochemical (PEC) water splitting due to its stability, low-cost, abundance and appropriate bandgap. However, it suffers from a mismatch between the hole diffusion length and light penetration length. We have theoretically designed and characterized an ultrathin planar hematite/silver nanohole array/silver substrate photoanode. Due to the supported destructive interference and surface plasmon resonance, photons are efficiently absorbed in an ultrathin hematite film. In conclusion, compared with ultrathin hematite photoanodes with nanophotonic structures, this photoanode has comparable photon absorption but with intrinsically lower recombination losses due to its planar structure and promises to exceed the state-of-the-art photocurrent of hematite photoanodes.

Authors:
 [1];  [2];  [3];  [4];  [4];  [2];  [4]
  1. Tsinghua Univ., Beijing (China); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Nanjing Univ. of Science and Technology, Nanjing (China)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Univ. of Michigan, Ann Arbor, MI (United States)
  4. Tsinghua Univ., Beijing (China)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1240846
Grant/Contract Number:  
SC0001299
Resource Type:
Accepted Manuscript
Journal Name:
Optics Express
Additional Journal Information:
Journal Volume: 23; Journal Issue: 24; Journal ID: ISSN 1094-4087
Publisher:
Optical Society of America (OSA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; solar energy; thin films

Citation Formats

Liu, Dong, Bierman, David M., Lenert, Andrej, Yu, Hai-Tong, Yang, Zhen, Wang, Evelyn N., and Duan, Yuan-Yuan. Ultrathin planar hematite film for solar photoelectrochemical water splitting. United States: N. p., 2015. Web. doi:10.1364/OE.23.0A1491.
Liu, Dong, Bierman, David M., Lenert, Andrej, Yu, Hai-Tong, Yang, Zhen, Wang, Evelyn N., & Duan, Yuan-Yuan. Ultrathin planar hematite film for solar photoelectrochemical water splitting. United States. https://doi.org/10.1364/OE.23.0A1491
Liu, Dong, Bierman, David M., Lenert, Andrej, Yu, Hai-Tong, Yang, Zhen, Wang, Evelyn N., and Duan, Yuan-Yuan. Thu . "Ultrathin planar hematite film for solar photoelectrochemical water splitting". United States. https://doi.org/10.1364/OE.23.0A1491. https://www.osti.gov/servlets/purl/1240846.
@article{osti_1240846,
title = {Ultrathin planar hematite film for solar photoelectrochemical water splitting},
author = {Liu, Dong and Bierman, David M. and Lenert, Andrej and Yu, Hai-Tong and Yang, Zhen and Wang, Evelyn N. and Duan, Yuan-Yuan},
abstractNote = {Hematite holds promise for photoelectrochemical (PEC) water splitting due to its stability, low-cost, abundance and appropriate bandgap. However, it suffers from a mismatch between the hole diffusion length and light penetration length. We have theoretically designed and characterized an ultrathin planar hematite/silver nanohole array/silver substrate photoanode. Due to the supported destructive interference and surface plasmon resonance, photons are efficiently absorbed in an ultrathin hematite film. In conclusion, compared with ultrathin hematite photoanodes with nanophotonic structures, this photoanode has comparable photon absorption but with intrinsically lower recombination losses due to its planar structure and promises to exceed the state-of-the-art photocurrent of hematite photoanodes.},
doi = {10.1364/OE.23.0A1491},
journal = {Optics Express},
number = 24,
volume = 23,
place = {United States},
year = {Thu Oct 08 00:00:00 EDT 2015},
month = {Thu Oct 08 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Efficient Photoelectrochemical Water Splitting with Ultrathin films of Hematite on Three-Dimensional Nanophotonic Structures
journal, March 2014

  • Qiu, Yongcai; Leung, Siu-Fung; Zhang, Qianpeng
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl500359e

Nearly Total Solar Absorption in Ultrathin Nanostructured Iron Oxide for Efficient Photoelectrochemical Water Splitting
journal, February 2014

  • Wang, Ken Xingze; Yu, Zongfu; Liu, Victor
  • ACS Photonics, Vol. 1, Issue 3
  • DOI: 10.1021/ph4001026

Nanometre optical coatings based on strong interference effects in highly absorbing media
journal, October 2012

  • Kats, Mikhail A.; Blanchard, Romain; Genevet, Patrice
  • Nature Materials, Vol. 12, Issue 1, p. 20-24
  • DOI: 10.1038/nmat3443

Light-Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis
journal, July 2010

  • Tilley, S. David; Cornuz, Maurin; Sivula, Kevin
  • Angewandte Chemie International Edition, Vol. 49, Issue 36
  • DOI: 10.1002/anie.201003110

Resonant light trapping in ultrathin films for water splitting
journal, November 2012

  • Dotan, Hen; Kfir, Ofer; Sharlin, Elad
  • Nature Materials, Vol. 12, Issue 2
  • DOI: 10.1038/nmat3477

Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications
journal, May 2014


Particle Swarm Optimization in Electromagnetics
journal, February 2004

  • Robinson, J.; Rahmat-Samii, Y.
  • IEEE Transactions on Antennas and Propagation, Vol. 52, Issue 2
  • DOI: 10.1109/TAP.2004.823969

Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes
journal, March 2011

  • Sivula, Kevin; Le Formal, Florian; Grätzel, Michael
  • ChemSusChem, Vol. 4, Issue 4
  • DOI: 10.1002/cssc.201000416

Plasmon Enhanced Solar-to-Fuel Energy Conversion
journal, August 2011

  • Thomann, Isabell; Pinaud, Blaise A.; Chen, Zhebo
  • Nano Letters, Vol. 11, Issue 8
  • DOI: 10.1021/nl201908s

Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes
journal, September 2012


Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach
journal, June 2010

  • Sivula, Kevin; Zboril, Radek; Le Formal, Florian
  • Journal of the American Chemical Society, Vol. 132, Issue 21
  • DOI: 10.1021/ja101564f

Decoupling Feature Size and Functionality in Solution-Processed, Porous Hematite Electrodes for Solar Water Splitting
journal, October 2010

  • Brillet, Jeremie; Grätzel, Michael; Sivula, Kevin
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl102708c

Light Trapping for Solar Fuel Generation with Mie Resonances
journal, February 2014

  • Kim, Soo Jin; Thomann, Isabell; Park, Junghyun
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404575e

Nanomaterials and nanostructures for efficient light absorption and photovoltaics
journal, January 2012


All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency
journal, December 2013

  • Jeong, Sangmoo; McGehee, Michael D.; Cui, Yi
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3950

Solution-processed core–shell nanowires for efficient photovoltaic cells
journal, August 2011

  • Tang, Jinyao; Huo, Ziyang; Brittman, Sarah
  • Nature Nanotechnology, Vol. 6, Issue 9
  • DOI: 10.1038/nnano.2011.139

Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols
journal, January 2010

  • Chen, Zhebo; Jaramillo, Thomas F.; Deutsch, Todd G.
  • Journal of Materials Research, Vol. 25, Issue 1
  • DOI: 10.1557/JMR.2010.0020

Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting
journal, May 2011

  • Ling, Yichuan; Wang, Gongming; Wheeler, Damon A.
  • Nano Letters, Vol. 11, Issue 5
  • DOI: 10.1021/nl200708y

Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation
journal, January 2014

  • Li, Ming; Deng, Jiujun; Pu, Aiwu
  • Journal of Materials Chemistry A, Vol. 2, Issue 19
  • DOI: 10.1039/c4ta00729h

Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting
journal, September 2013

  • Kim, Jae Young; Magesh, Ganesan; Youn, Duck Hyun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02681

On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films
journal, January 2013

  • Iandolo, Beniamino; Antosiewicz, Tomasz J.; Hellman, Anders
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 14
  • DOI: 10.1039/c3cp44483j

Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite
journal, January 2000

  • Beermann, Niclas; Vayssieres, Lionel; Lindquist, Sten-Eric
  • Journal of The Electrochemical Society, Vol. 147, Issue 7
  • DOI: 10.1149/1.1393553

Works referencing / citing this record:

Analysis of Optical Losses in a Photoelectrochemical Cell: A Tool for Precise Absorptance Estimation
journal, November 2017

  • Cendula, Peter; Steier, Ludmilla; Losio, Paolo A.
  • Advanced Functional Materials, Vol. 28, Issue 1
  • DOI: 10.1002/adfm.201702768

Engineering Light at the Nanoscale: Structural Color Filters and Broadband Perfect Absorbers
journal, August 2017

  • Ji, Chengang; Lee, Kyu-Tae; Xu, Ting
  • Advanced Optical Materials, Vol. 5, Issue 20
  • DOI: 10.1002/adom.201700368

Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications
journal, April 2019

  • Ghobadi, Amir; Ulusoy Ghobadi, Turkan Gamze; Karadas, Ferdi
  • Advanced Optical Materials, Vol. 7, Issue 14
  • DOI: 10.1002/adom.201900028