DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water‐Splitting Devices

Abstract

Abstract Photoelectrochemical (PEC) cells are attractive for storing solar energy in chemical bonds through cleaving of water into oxygen and hydrogen. Although hematite (α‐Fe 2 O 3 ) is a promising photoanode material owing to its chemical stability, suitable band gap, low cost, and environmental friendliness, its performance is limited by short carrier lifetimes, poor conductivity, and sluggish kinetics leading to low (solar‐to‐hydrogen) STH efficiency. Herein, we combine solution‐based hydrothermal growth and a post‐growth surface exposure through atomic layer deposition (ALD) to show a dramatic enhancement of the efficiency for water photolysis. These modified photoanodes show a high photocurrent of 3.12 mA cm −2 at 1.23 V versus RHE, (>5 times higher than Fe 2 O 3 ) and a plateau photocurrent of 4.5 mA cm −2 at 1.5 V versus RHE. We demonstrate that these photoanodes in tandem with a CH 3 NH 3 PbI 3 perovskite solar cell achieves overall unassisted water splitting with an STH conversion efficiency of 3.4 %, constituting a new benchmark for hematite‐based tandem systems.

Authors:
 [1];  [1];  [2];  [3];  [2];  [4];  [2];  [4];  [3];  [1];  [3];  [5]
  1. School of Materials Science and Engineering Nanyang Technological University Nanyang Avenue Singapore 639798 Singapore
  2. Energy Research Institute @NTU, ERI@N, Research Techno Plaza, X-Frontier Block, Level 5 50 Nanyang Drive Singapore 637553 Singapore
  3. Laboratory of Photonics and Interfaces, Department of Chemistry and Chemical Engineering Swiss Federal Institute of Technology Station 6 1015 Lausanne Switzerland
  4. Department of Materials Science and Engineering University of California Berkeley CA 94720 USA, National Center for Electron Microscopy, Molecular Foundry, Lawrence, Berkeley National Laboratory Berkeley CA 94720 USA
  5. School of Materials Science and Engineering Nanyang Technological University Nanyang Avenue Singapore 639798 Singapore, Energy Research Institute @NTU, ERI@N, Research Techno Plaza, X-Frontier Block, Level 5 50 Nanyang Drive Singapore 637553 Singapore
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1401531
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Name: ChemSusChem Journal Volume: 10 Journal Issue: 11; Journal ID: ISSN 1864-5631
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Gurudayal,, John, Rohit Abraham, Boix, Pablo P., Yi, Chenyi, Shi, Chen, Scott, M. C., Veldhuis, Sjoerd A., Minor, Andrew M., Zakeeruddin, Shaik M., Wong, Lydia Helena, Grätzel, Michael, and Mathews, Nripan. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water‐Splitting Devices. Germany: N. p., 2017. Web. doi:10.1002/cssc.201700159.
Gurudayal,, John, Rohit Abraham, Boix, Pablo P., Yi, Chenyi, Shi, Chen, Scott, M. C., Veldhuis, Sjoerd A., Minor, Andrew M., Zakeeruddin, Shaik M., Wong, Lydia Helena, Grätzel, Michael, & Mathews, Nripan. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water‐Splitting Devices. Germany. https://doi.org/10.1002/cssc.201700159
Gurudayal,, John, Rohit Abraham, Boix, Pablo P., Yi, Chenyi, Shi, Chen, Scott, M. C., Veldhuis, Sjoerd A., Minor, Andrew M., Zakeeruddin, Shaik M., Wong, Lydia Helena, Grätzel, Michael, and Mathews, Nripan. Fri . "Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water‐Splitting Devices". Germany. https://doi.org/10.1002/cssc.201700159.
@article{osti_1401531,
title = {Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water‐Splitting Devices},
author = {Gurudayal, and John, Rohit Abraham and Boix, Pablo P. and Yi, Chenyi and Shi, Chen and Scott, M. C. and Veldhuis, Sjoerd A. and Minor, Andrew M. and Zakeeruddin, Shaik M. and Wong, Lydia Helena and Grätzel, Michael and Mathews, Nripan},
abstractNote = {Abstract Photoelectrochemical (PEC) cells are attractive for storing solar energy in chemical bonds through cleaving of water into oxygen and hydrogen. Although hematite (α‐Fe 2 O 3 ) is a promising photoanode material owing to its chemical stability, suitable band gap, low cost, and environmental friendliness, its performance is limited by short carrier lifetimes, poor conductivity, and sluggish kinetics leading to low (solar‐to‐hydrogen) STH efficiency. Herein, we combine solution‐based hydrothermal growth and a post‐growth surface exposure through atomic layer deposition (ALD) to show a dramatic enhancement of the efficiency for water photolysis. These modified photoanodes show a high photocurrent of 3.12 mA cm −2 at 1.23 V versus RHE, (>5 times higher than Fe 2 O 3 ) and a plateau photocurrent of 4.5 mA cm −2 at 1.5 V versus RHE. We demonstrate that these photoanodes in tandem with a CH 3 NH 3 PbI 3 perovskite solar cell achieves overall unassisted water splitting with an STH conversion efficiency of 3.4 %, constituting a new benchmark for hematite‐based tandem systems.},
doi = {10.1002/cssc.201700159},
journal = {ChemSusChem},
number = 11,
volume = 10,
place = {Germany},
year = {Fri May 12 00:00:00 EDT 2017},
month = {Fri May 12 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/cssc.201700159

Citation Metrics:
Cited by: 51 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Improving the Efficiency of Hematite Nanorods for Photoelectrochemical Water Splitting by Doping with Manganese
journal, April 2014

  • Gurudayal, ; Chiam, Sing Yang; Kumar, Mulmudi Hemant
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 8
  • DOI: 10.1021/am500643y

Stable Hematite Nanosheet Photoanodes for Enhanced Photoelectrochemical Water Splitting
journal, May 2016

  • Peerakiatkhajohn, Piangjai; Yun, Jung-Ho; Chen, Hongjun
  • Advanced Materials, Vol. 28, Issue 30
  • DOI: 10.1002/adma.201601525

Iron based photoanodes for solar fuel production
journal, January 2014

  • Bassi, Prince Saurabh; Wong, Lydia Helena
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 24
  • DOI: 10.1039/c3cp55174a

Flatband Potentials and Donor Densities of Polycrystalline α-Fe[sub 2]O[sub 3] Determined from Mott-Schottky Plots
journal, January 1978

  • Kennedy, John H.
  • Journal of The Electrochemical Society, Vol. 125, Issue 5
  • DOI: 10.1149/1.2131535

Theoretical Understanding of Enhanced Photoelectrochemical Catalytic Activity of Sn-Doped Hematite: Anisotropic Catalysis and Effects of Morin Transition and Sn Doping
journal, February 2013

  • Meng, Xiangying; Qin, Gaowu; Goddard, William A.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 8
  • DOI: 10.1021/jp310740h

Resonant light trapping in ultrathin films for water splitting
journal, November 2012

  • Dotan, Hen; Kfir, Ofer; Sharlin, Elad
  • Nature Materials, Vol. 12, Issue 2
  • DOI: 10.1038/nmat3477

New Benchmark for Water Photooxidation by Nanostructured α-Fe 2 O 3 Films
journal, December 2006

  • Kay, Andreas; Cesar, Ilkay; Grätzel, Michael
  • Journal of the American Chemical Society, Vol. 128, Issue 49
  • DOI: 10.1021/ja064380l

Core–Shell Hematite Nanorods: A Simple Method To Improve the Charge Transfer in the Photoanode for Photoelectrochemical Water Splitting
journal, March 2015

  • Gurudayal, ; Chee, Png Mei; Boix, Pablo P.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 12
  • DOI: 10.1021/acsami.5b00417

Dynamics of photogenerated holes in nanocrystalline α-Fe 2 O 3 electrodes for water oxidation probed by transient absorption spectroscopy
journal, January 2011

  • Pendlebury, Stephanie R.; Barroso, Monica; Cowan, Alexander J.
  • Chem. Commun., Vol. 47, Issue 2
  • DOI: 10.1039/C0CC03627G

Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes
journal, March 2011

  • Sivula, Kevin; Le Formal, Florian; Grätzel, Michael
  • ChemSusChem, Vol. 4, Issue 4
  • DOI: 10.1002/cssc.201000416

Highly efficient water splitting by a dual-absorber tandem cell
journal, November 2012


On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot
journal, March 1978


Perovskite Photovoltaics with Outstanding Performance Produced by Chemical Conversion of Bilayer Mesostructured Lead Halide/TiO 2 Films
journal, February 2016


Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties
journal, January 2012

  • Wheeler, Damon A.; Wang, Gongming; Ling, Yichuan
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee00001f

Enhancement in the Performance of Ultrathin Hematite Photoanode for Water Splitting by an Oxide Underlayer
journal, April 2012

  • Hisatomi, Takashi; Dotan, Hen; Stefik, Morgan
  • Advanced Materials, Vol. 24, Issue 20
  • DOI: 10.1002/adma.201104868

Nanostructured WO 3 /BiVO 4 Photoanodes for Efficient Photoelectrochemical Water Splitting
journal, May 2014


Ultrathin films on copper(i) oxide water splitting photocathodes: a study on performance and stability
journal, January 2012

  • Paracchino, Adriana; Mathews, Nripan; Hisatomi, Takashi
  • Energy & Environmental Science, Vol. 5, Issue 9
  • DOI: 10.1039/c2ee22063f

Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting
journal, September 2013

  • Kim, Jae Young; Magesh, Ganesan; Youn, Duck Hyun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02681

Understanding Hematite Doping with Group IV Elements: A DFT+ U Study
journal, November 2015

  • Zhou, Zhaohui; Huo, Pengju; Guo, Liejin
  • The Journal of Physical Chemistry C, Vol. 119, Issue 47
  • DOI: 10.1021/acs.jpcc.5b08081

Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes
journal, January 2014

  • Dunn, Halina K.; Feckl, Johann M.; Müller, Alexander
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 44
  • DOI: 10.1039/C4CP03946G

Modification of Hematite Electronic Properties with Trimethyl Aluminum to Enhance the Efficiency of Photoelectrodes
journal, September 2014

  • Tallarida, Massimo; Das, Chittaranjan; Cibrev, Dejan
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 20
  • DOI: 10.1021/jz501751w

Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
journal, July 2013

  • Abdi, Fatwa F.; Han, Lihao; Smets, Arno H. M.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3195

Understanding the origin of photoelectrode performance enhancement by probing surface kinetics
journal, January 2016

  • Thorne, James E.; Jang, Ji-Wook; Liu, Erik Y.
  • Chemical Science, Vol. 7, Issue 5
  • DOI: 10.1039/C5SC04519C

A novel strategy for surface treatment on hematite photoanode for efficient water oxidation
journal, January 2013

  • Xi, Lifei; Chiam, Sing Yang; Mak, Wai Fatt
  • Chem. Sci., Vol. 4, Issue 1
  • DOI: 10.1039/C2SC20881D

Identifying champion nanostructures for solar water-splitting
journal, July 2013

  • Warren, Scott C.; Voïtchovsky, Kislon; Dotan, Hen
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3684

Review of Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting
journal, July 2014

  • Ling, Yichuan; Li, Yat
  • Particle & Particle Systems Characterization, Vol. 31, Issue 11
  • DOI: 10.1002/ppsc.201400051

Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting
journal, December 2008

  • Cesar, Ilkay; Sivula, Kevin; Kay, Andreas
  • The Journal of Physical Chemistry C, Vol. 113, Issue 2
  • DOI: 10.1021/jp809060p

Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
journal, January 2015

  • Ager, Joel W.; Shaner, Matthew R.; Walczak, Karl A.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE00457H

Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD
journal, January 2011

  • Zhang, Peng; Kleiman-Shwarsctein, Alan; Hu, Yong-Sheng
  • Energy & Environmental Science, Vol. 4, Issue 3
  • DOI: 10.1039/c0ee00656d

A model of Fe 3+ -kaolinite, Al 3+ -goethite, Al 3+ -hematite equilibria in laterites
journal, March 1989


The Transient Photocurrent and Photovoltage Behavior of a Hematite Photoanode under Working Conditions and the Influence of Surface Treatments
journal, December 2012

  • Le Formal, Florian; Sivula, Kevin; Grätzel, Michael
  • The Journal of Physical Chemistry C, Vol. 116, Issue 51
  • DOI: 10.1021/jp308591k

Aqueous photoelectrochemistry of hematite nanorod array
journal, February 2002


Improving Hematite-based Photoelectrochemical Water Splitting with Ultrathin TiO 2 by Atomic Layer Deposition
journal, July 2014

  • Yang, Xiaogang; Liu, Rui; Du, Chun
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 15
  • DOI: 10.1021/am500948t

Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach
journal, June 2010

  • Sivula, Kevin; Zboril, Radek; Le Formal, Florian
  • Journal of the American Chemical Society, Vol. 132, Issue 21
  • DOI: 10.1021/ja101564f

Photoelectrochemistry of tin-doped iron oxide electrodes
journal, November 2007


A facile nonpolar organic solution process of a nanostructured hematite photoanode with high efficiency and stability for water splitting
journal, January 2016

  • Wang, Jian-Jun; Hu, Yelin; Toth, Rita
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA06439B

Facile fabrication of tin-doped hematite photoelectrodes – effect of doping on magnetic properties and performance for light-induced water splitting
journal, January 2012

  • Frydrych, Jiri; Machala, Libor; Tucek, Jiri
  • Journal of Materials Chemistry, Vol. 22, Issue 43
  • DOI: 10.1039/c2jm34639g

Probing the photoelectrochemical properties of hematite (α-Fe 2 O 3 ) electrodes using hydrogen peroxide as a hole scavenger
journal, January 2011

  • Dotan, Hen; Sivula, Kevin; Grätzel, Michael
  • Energy Environ. Sci., Vol. 4, Issue 3
  • DOI: 10.1039/C0EE00570C

Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices
journal, January 2014

  • Döscher, H.; Geisz, J. F.; Deutsch, T. G.
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01753F

Activation of Hematite Nanorod Arrays for Photoelectrochemical Water Splitting
journal, March 2011

  • Morrish, Rachel; Rahman, Mahfujur; MacElroy, J. M. Don
  • ChemSusChem, Vol. 4, Issue 4, p. 474-479
  • DOI: 10.1002/cssc.201100066

Efficiency of solar water splitting using semiconductor electrodes
journal, November 2006


Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting
journal, May 2011

  • Ling, Yichuan; Wang, Gongming; Wheeler, Damon A.
  • Nano Letters, Vol. 11, Issue 5
  • DOI: 10.1021/nl200708y

Perovskite–Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting
journal, May 2015


Photoelectrochemical Performance of Nanostructured Ti- and Sn-Doped α-Fe 2 O 3 Photoanodes
journal, December 2010

  • Hahn, Nathan T.; Mullins, C. Buddie
  • Chemistry of Materials, Vol. 22, Issue 23
  • DOI: 10.1021/cm1026078