DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries

Abstract

This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.

Authors:
 [1];  [1];  [2];  [1]
  1. Colorado School of Mines, Golden, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1236162
Report Number(s):
NREL/JA-5900-65709
Journal ID: ISSN 1944-8244
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 7; Journal Issue: 51; Related Information: ACS Applied Materials and Interfaces; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium sulfide; lithium-sulfur batteries; synthesis; hydrogen sulfide; lithium naphthalenide

Citation Formats

Li, Xuemin, Wolden, Colin A., Ban, Chunmei, and Yang, Yongan. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries. United States: N. p., 2015. Web. doi:10.1021/acsami.5b09367.
Li, Xuemin, Wolden, Colin A., Ban, Chunmei, & Yang, Yongan. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries. United States. https://doi.org/10.1021/acsami.5b09367
Li, Xuemin, Wolden, Colin A., Ban, Chunmei, and Yang, Yongan. Thu . "Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries". United States. https://doi.org/10.1021/acsami.5b09367. https://www.osti.gov/servlets/purl/1236162.
@article{osti_1236162,
title = {Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries},
author = {Li, Xuemin and Wolden, Colin A. and Ban, Chunmei and Yang, Yongan},
abstractNote = {This work reports a new method of synthesizing anhydrous lithium sulfide (Li2S) nanocrystals and demonstrates their potential as cathode materials for advanced rechargeable batteries. Li2S is synthesized by reacting hydrogen sulfide (H2S) with lithium naphthalenide (Li-NAP), a thermodynamically spontaneous reaction that proceeds to completion rapidly at ambient temperature and pressure. The process completely removes H2S, a major industrial waste, while cogenerating 1,4-dihydronaphthalene, itself a value-added chemical that can be used as liquid fuel. The phase purity, morphology, and homogeneity of the resulting nanopowders were confirmed by X-ray diffraction and scanning electron microscopy. The synthesized Li2S nanoparticles (100 nm) were assembled into cathodes, and their performance was compared to that of cathodes fabricated using commercial Li2S micropowders (1–5 μm). As a result, electrochemical analyses demonstrated that the synthesized Li2S were superior in terms of (dis)charge capacity, cycling stability, output voltage, and voltage efficiency.},
doi = {10.1021/acsami.5b09367},
journal = {ACS Applied Materials and Interfaces},
number = 51,
volume = 7,
place = {United States},
year = {Thu Dec 03 00:00:00 EST 2015},
month = {Thu Dec 03 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Evolution of Strategies for Modern Rechargeable Batteries
journal, June 2012

  • Goodenough, John B.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar2002705

History, Evolution, and Future Status of Energy Storage
journal, May 2012


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes
journal, June 2012

  • Evers, Scott; Nazar, Linda F.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar3001348

Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects
journal, November 2013

  • Yin, Ya-Xia; Xin, Sen; Guo, Yu-Guo
  • Angewandte Chemie International Edition, Vol. 52, Issue 50
  • DOI: 10.1002/anie.201304762

High-Capacity Micrometer-Sized Li2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries
journal, September 2012

  • Yang, Yuan; Zheng, Guangyuan; Misra, Sumohan
  • Journal of the American Chemical Society, Vol. 134, Issue 37, p. 15387-15394
  • DOI: 10.1021/ja3052206

High Energy Rechargeable Li-S Cells for EV Application: Status, Remaining Problems and Solutions
conference, January 2010

  • Mikhaylik, Yuriy V.; Kovalev, Igor; Schock, Riley
  • 216th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3414001

Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy
journal, April 2010

  • Yang, Yuan; McDowell, Matthew T.; Jackson, Ariel
  • Nano Letters, Vol. 10, Issue 4, p. 1486-1491
  • DOI: 10.1021/nl100504q

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
journal, January 2013

  • Wei Seh, Zhi; Li, Weiyang; Cha, Judy J.
  • Nature Communications, Vol. 4, Article No. 1331
  • DOI: 10.1038/ncomms2327

Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries
journal, October 2013

  • Zhou, Weidong; Yu, Yingchao; Chen, Hao
  • Journal of the American Chemical Society, Vol. 135, Issue 44
  • DOI: 10.1021/ja409508q

Ultrasmall Li2S Nanoparticles Anchored in Graphene Nanosheets for High-Energy Lithium-Ion Batteries
journal, September 2014

  • Zhang, Kai; Wang, Lijiang; Hu, Zhe
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06467

Mechanistic modeling of polysulfide shuttle and capacity loss in lithium–sulfur batteries
journal, August 2014


Preparation of electrochemically active lithium sulfide–carbon composites using spark-plasma-sintering process
journal, May 2010

  • Takeuchi, Tomonari; Sakaebe, Hikari; Kageyama, Hiroyuki
  • Journal of Power Sources, Vol. 195, Issue 9, p. 2928-2934
  • DOI: 10.1016/j.jpowsour.2009.11.011

A Lithium-Ion Sulfur Battery Based on a Carbon-Coated Lithium-Sulfide Cathode and an Electrodeposited Silicon-Based Anode
journal, February 2014

  • Agostini, Marco; Hassoun, Jusef; Liu, Jun
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 14
  • DOI: 10.1021/am4057166

A High-Performance Polymer Tin Sulfur Lithium Ion Battery
journal, February 2010

  • Hassoun, Jusef; Scrosati, Bruno
  • Angewandte Chemie International Edition, Vol. 49, Issue 13, p. 2371-2374
  • DOI: 10.1002/anie.200907324

High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries
journal, January 2012

  • Nagao, Motohiro; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Journal of Materials Chemistry, Vol. 22, Issue 19
  • DOI: 10.1039/c2jm16802b

Nanostructured Li 2 S–C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries
journal, February 2012

  • Cai, Kunpeng; Song, Min-Kyu; Cairns, Elton J.
  • Nano Letters, Vol. 12, Issue 12
  • DOI: 10.1021/nl303965a

Nanoporous Li2S and MWCNT-linked Li2S powder cathodes for lithium-sulfur and lithium-ion battery chemistries
journal, January 2014

  • Wu, Feixiang; Magasinski, Alexandre; Yushin, Gleb
  • Journal of Materials Chemistry A, Vol. 2, Issue 17, p. 6064-6070
  • DOI: 10.1039/C3TA14161F

Slurryless Li 2 S/Reduced Graphene Oxide Cathode Paper for High-Performance Lithium Sulfur Battery
journal, February 2015


Lithium–Sulfur Battery Cathode Enabled by Lithium–Nitrile Interaction
journal, December 2012

  • Guo, Juchen; Yang, Zichao; Yu, Yingchao
  • Journal of the American Chemical Society, Vol. 135, Issue 2
  • DOI: 10.1021/ja309435f

Li2S-reduced graphene oxide nanocomposites as cathode material for lithium sulfur batteries
journal, April 2014


Lithium Superionic Sulfide Cathode for All-Solid Lithium–Sulfur Batteries
journal, March 2013

  • Lin, Zhan; Liu, Zengcai; Dudney, Nancy J.
  • ACS Nano, Vol. 7, Issue 3, p. 2829-2833
  • DOI: 10.1021/nn400391h

In Situ Formed Lithium Sulfide/Microporous Carbon Cathodes for Lithium-Ion Batteries
journal, November 2013

  • Zheng, Shiyou; Chen, Yvonne; Xu, Yunhua
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn404601h

In situ synthesis of lithium sulfide–carbon composites as cathode materials for rechargeable lithium batteries
journal, January 2013

  • Yang, Zichao; Guo, Juchen; Das, Shyamal K.
  • Journal of Materials Chemistry A, Vol. 1, Issue 4, p. 1433-1440
  • DOI: 10.1039/C2TA00779G

Synthesis of highly electrochemically active Li 2 S nanoparticles for lithium–sulfur-batteries
journal, January 2015

  • Kohl, M.; Brückner, J.; Bauer, I.
  • Journal of Materials Chemistry A, Vol. 3, Issue 31
  • DOI: 10.1039/C5TA04504E

Vapor-Phase Atomic-Controllable Growth of Amorphous Li 2 S for High-Performance Lithium–Sulfur Batteries
journal, October 2014

  • Meng, Xiangbo; Comstock, David J.; Fister, Timothy T.
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn505480w

Thermodynamically Favorable Conversion of Hydrogen Sulfide into Valuable Products through Reaction with Sodium Naphthalenide
journal, July 2015


Lithium Silicide Nanocrystals: Synthesis, Chemical Stability, Thermal Stability, and Carbon Encapsulation
journal, September 2014

  • Cloud, Jacqueline E.; Wang, Yonglong; Li, Xuemin
  • Inorganic Chemistry, Vol. 53, Issue 20
  • DOI: 10.1021/ic501923s

Enhancing the selectivity of the hydrogenation of naphthalene to tetralin by high temperature water
journal, January 2009

  • Cheng, Yan; Fan, Honglei; Wu, Suxiang
  • Green Chemistry, Vol. 11, Issue 7
  • DOI: 10.1039/b904305e

CCCLXXXIX.—The action of hydrogen sulphide on lithium ethoxide. Lithium hydrosulphide
journal, January 1923

  • Jones, John Henry; Thomas, John Smeath
  • J. Chem. Soc., Trans., Vol. 123, Issue 0
  • DOI: 10.1039/ct9232303285

Artificial Solid Electrolyte Interphase-Protected Li x Si Nanoparticles: An Efficient and Stable Prelithiation Reagent for Lithium-Ion Batteries
journal, June 2015

  • Zhao, Jie; Lu, Zhenda; Wang, Haotian
  • Journal of the American Chemical Society, Vol. 137, Issue 26
  • DOI: 10.1021/jacs.5b04526

The Scherrer Formula for X-Ray Particle Size Determination
journal, November 1939


Li 2 S-Carbon Sandwiched Electrodes with Superior Performance for Lithium-Sulfur Batteries
journal, August 2013

  • Fu, Yongzhu; Su, Yu-Sheng; Manthiram, Arumugam
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300655

Open-Circuit Voltage Study of Graphite-Coated Copper Foil Electrodes in Lithium-Ion Battery Electrolytes
journal, January 2003

  • Zhao, Mingchuan; Xu, Mingming; Dewald, Howard D.
  • Journal of The Electrochemical Society, Vol. 150, Issue 1
  • DOI: 10.1149/1.1527050

How to Obtain Reproducible Results for Lithium Sulfur Batteries?
journal, January 2013

  • Zheng, Jianming; Lv, Dongping; Gu, Meng
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.106311jes

Porous Hollow Carbon@Sulfur Composites for High-Power Lithium-Sulfur Batteries
journal, May 2011

  • Jayaprakash, N.; Shen, J.; Moganty, Surya S.
  • Angewandte Chemie International Edition, Vol. 50, Issue 26, p. 5904-5908
  • DOI: 10.1002/anie.201100637

Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries
journal, October 2012

  • Xin, Sen; Gu, Lin; Zhao, Na-Hong
  • Journal of the American Chemical Society, Vol. 134, Issue 45
  • DOI: 10.1021/ja308170k

Carbon coated lithium sulfide particles for lithium battery cathodes
journal, August 2013


Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer
journal, January 2012

  • Su, Yu-Sheng; Manthiram, Arumugam
  • Nature Communications, Vol. 3, Article No. 1166
  • DOI: 10.1038/ncomms2163

A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li–S batteries
journal, January 2014

  • Chung, Sheng-Heng; Manthiram, Arumugam
  • Chemical Communications, Vol. 50, Issue 32
  • DOI: 10.1039/c4cc00850b

Mesoporous Carbon Interlayers with Tailored Pore Volume as Polysulfide Reservoir for High-Energy Lithium–Sulfur Batteries
journal, February 2015

  • Balach, Juan; Jaumann, Tony; Klose, Markus
  • The Journal of Physical Chemistry C, Vol. 119, Issue 9
  • DOI: 10.1021/jp512062t

Fabrication of mesoporous Li 2 S–C nanofibers for high performance Li/Li 2 S cell cathodes
journal, January 2015


Works referencing / citing this record:

Facile Preparation of High‐Content N‐Doped CNT Microspheres for High‐Performance Lithium Storage
journal, July 2019

  • Wang, Jianli; Yan, Xufeng; Zhang, Zhao
  • Advanced Functional Materials, Vol. 29, Issue 39
  • DOI: 10.1002/adfm.201904819

Na4Mn9O18 nanowires wrapped by reduced graphene oxide as efficient sulfur host material for lithium/sulfur batteries
journal, December 2019

  • Wang, Xingbo; Sun, Zhenghao; Zhao, Yan
  • Journal of Solid State Electrochemistry, Vol. 24, Issue 1
  • DOI: 10.1007/s10008-019-04478-0

Application of Rod-Like Li 6 PS 5 Cl Directly Synthesized by a Liquid Phase Process to Sheet-Type Electrodes for All-Solid-State Lithium Batteries
journal, December 2018

  • Choi, Sunho; Ann, Jiu; Do, Jiyae
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0301903jes

Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions
journal, March 2016

  • Borchardt, Lars; Oschatz, Martin; Kaskel, Stefan
  • Chemistry - A European Journal, Vol. 22, Issue 22
  • DOI: 10.1002/chem.201600040

In Situ Electrochemically Derived Amorphous-Li 2 S for High Performance Li 2 S/Graphite Full Cell
journal, April 2018


A facile synthetic approach to nanostructured Li 2 S cathodes for rechargeable solid-state Li–S batteries
journal, January 2019

  • El-Shinawi, Hany; Cussen, Edmund J.; Corr, Serena A.
  • Nanoscale, Vol. 11, Issue 41
  • DOI: 10.1039/c9nr06239d