skip to main content


8 results for: All records
Author ORCID ID is 0000000235504423
Full Text and Citations
  1. Here, the compatibility of biodiesel blends with five common elastomers (acrylonitrile rubber or NBR, fluorocarbon, neoprene, ethylene propylene diene monomer or EPDM, and silicone) was assessed using Hansen solubility parameters. A solubility analysis was performed over the full diesel blend range and the model used methyl hydroperoxide, acetaldehyde, and formic acid to represent the decomposition products of biodiesel. An empirical study was also conducted to determine the efficacy of the approach to predict the volume swell of elastomers. This study included the influence of biodiesel with acetaldehyde and formic acid. The solubility model showed good agreement with measured volumes formore » fluorocarbon, neoprene, EPDM, and silicone. However, solubility curves for NBR did not reflect the measured volume changes, and therefore the solubility parameters used for NBR in this study are not considered reliable. The results showed that formic acid caused higher swelling in NBR, fluorocarbon, neoprene, and silicone than did acetaldehyde. For EPDM, the measured volume decreased with both biodiesel concentration and the addition of formic acid.« less
  2. This work explores the dependence of fuel distillation and flame speed on low-speed pre-ignition (LSPI). Findings are based on cylinder pressure analysis, as well as the number count, clustering, intensity, duration, and onset crank angle of LSPI events. Four fuels were used, with three of the fuels being blends with gasoline, and the fourth being neat gasoline. The blended fuels consisted of single molecules of different molecular types: a ketone (cyclopentanone), an alcohol (2-methyl-1-butanol), and an aromatic (ethylbenzene). All three pure molecules have RON values within ±2 and boiling points within ±5 °C. These fuels were blended with gasoline tomore » a 25% mass fraction and were used to run the engine at identical LSPI prone operating conditions. The findings highlight that fuels with similar boiling properties and octane numbers can exhibit similar LSPI number counts, but with vastly different LSPI magnitudes and intensities. Moreover, the results highlight fundamental fuel properties such as flame speed are critical to characterizing the LSPI propensity and behavior of the fuel.« less
  3. Here, the purpose of this work is to record the baseline performance of a state-of-the-art micro-combined heat and power (mCHP) system. A second goal of this work is to provide detailed thermodynamic first and second law performance measurements of the internal combustion engine and generator subsystems. A global technology survey was conducted to identify the leading mCHP systems in the 1 kW electric range. The Honda ECOWILL was identified as the state-of-the-art system in the United States, and an unused unit was procured. The ECOWILL underwent round-robin performance testing at three independent laboratories. First law (energy) and second law (exergy)more » analyses were conducted on the steady state data. Analysis revealed the ECOWILL operated at a first law electrical efficiency of 23.5 ± 0.4% and a utilization factor of 74.5 ± 3.2%. The primary energy loss was heat transfer from the device, followed by chemical and thermal energy in the exhaust stack. The second law analysis showed the ECOWILL operated at a second law electrical efficiency of 23.1 ± 0.4% and total (including exergy in both the electrical and recovered waste heat streams) second law efficiency of 30.2 ± 2.3%. Key areas of exergy destruction were, in decreasing magnitude, heat transfer, combustion irreversibility, and generator and friction losses.« less
  4. Here, this study investigated the potential for catalytically reforming liquid fuels in a simulated exhaust gas recirculation (EGR) mixture loop for the purpose of generating reformate that could be used to increase stoichiometric combustion engine efficiency. The experiments were performed on a simulated exhaust flow reactor using a Rh/Al 2O 3 reformer catalyst, and the fuels evaluated included iso-octane, ethanol, and gasoline. Both steam reforming and partial oxidation reforming were examined as routes for the production of reformate. Steam reforming was determined to be an ineffective option for reforming in an EGR loop, because of the high exhaust temperatures (inmore » excess of 700 °C) required to produce adequate concentrations of reformate, regardless of fuel. However, partial oxidation reforming is capable of producing hydrogen concentrations as high as 10%–16%, depending on fuel and operating conditions in the simulated EGR gas mixture. Meanwhile, measurements of total fuel enthalpy retention were shown to have favorable energetics under a range of conditions, although a tradeoff between fuel enthalpy retention and reformate production was observed. Of the three fuels evaluated, iso-octane exhibited the best overall performance, followed by ethanol and then gasoline. Overall, it was found that partial oxidation reforming of liquid fuels in a simulated EGR mixture over the Rh/Al 2O 3 catalyst demonstrated sufficiently high reformate yields and favorable energetics to warrant further evaluation in the EGR system of a stoichiometric combustion engine.« less
  5. The goal of the US Department of Energy Co-Optimization of Fuels and Engines (Co-Optima) initiative is to accelerate the development of advanced fuels and engines for higher efficiency and lower emissions. A guiding principle of this initiative is the central fuel properties hypothesis (CFPH), which states that fuel properties provide an indication of a fuel’s performance, regardless of its chemical composition. This is an important consideration for Co-Optima because many of the fuels under consideration are from bio-derived sources with chemical compositions that are unconventional relative to petroleum-derived gasoline or ethanol. In this study, we investigated a total of sevenmore » fuels in a spark ignition engine under boosted operating conditions to determine whether knock propensity is predicted by fuel antiknock metrics: antiknock index (AKI), research octane number (RON), and octane index (OI). Six of these fuels have a constant RON value but otherwise represent a wide range of fuel properties and chemistry. Consistent with previous studies, we found that OI was a much better predictor of knock propensity that either AKI or RON. However, we also found that there were significant fuel-specific deviations from the OI predictions. Combustion analysis provided insight that fuel kinetic complexities, including the presence of pre-spark heat release, likely limits the ability of standardized tests and metrics to accurately predict knocking tendency at all operating conditions. While limitations of OI were revealed in this study, we found that fuels with unconventional chemistry, in particular esters and ethers, behaved in accordance with CFPH as well as petroleum-derived fuels.« less
  6. The use of fuel reformate from catalytic processes is known to have beneficial effects on the spark-ignited (SI) combustion process through enhanced dilution tolerance and decreased combustion duration, but in many cases reformate generation can incur a significant fuel penalty. Here, in this two-part investigation, we demonstrate that efficient catalytic fuel reforming can result in improved brake engine efficiency while maintaining stoichiometric exhaust under the right conditions. In part one of this investigation, we used a combination of thermodynamic equilibrium calculations and experimental fuel catalytic reforming measurements on an engine to characterize the best possible reforming performance and energetics overmore » a range of equivalence ratios and O 2 concentrations. Ideally, one might expect the highest levels of thermochemical recuperation for the highest catalyst equivalence ratios. However, reforming under these conditions is highly endothermic, and the available enthalpy for reforming is constrained. Thus for relatively high equivalence ratios, more methane and less H 2 and CO are produced. Our experiments revealed that this suppression of H 2 and CO could be countered by adding small amounts of O 2, yielding as much as 15 vol % H 2 at the catalyst outlet for 4 < Φ catalyst < 7 under quasi-steady-state conditions. Under these conditions the H 2 and CO yields were highest and there was significant water consumption, confirming the presence of steam reforming reactions. Analyses of the experimental catalyst measurements indicated the possibility of both endothermic and exothermic reaction stages and global reaction rates sufficient to enable the utilization of higher space velocities than those employed in our experiments. Finally, in a companion paper detailing part two of this investigation, we present results for the engine dilution tolerance and brake engine efficiency impacts of the reforming levels achieved.« less
  7. The octane sensitivity (S), defined as the difference between the Research Octane Number (RON) and the Motor Octane Number (MON), is of increasing interest in spark ignition (SI) engines because of its relevance to knock resistance at boosted high load conditions. In this study, three fuels with nearly constant RON (99.2-100) and varying S (S = 0, 6.5, and 12) are operated at the knock limited spark advance (KLSA) at nominal engine loads of 10, 15, and 20 bar IMEP in a single cylinder SI engine with side-mount direct injection fueling, at λ =1 stoichiometry. At each load condition, themore » intake manifold temperature is swept from 35 °C to 95 °C to alter the temperature and pressure history of the charge. Results show that at the 10 bar IMEP condition, knock resistance is inversely proportional to fuel S where the S=0 fuel is the most knock resist, but as load increases the trend reverses and knock resistance becomes proportional to fuel S, and the S=12 fuel is the most knock resistant. The reversal of knock resistance as a function of S with load it is attributed to changing fuel ignition delay, as bulk gas intermediate temperature heat release (ITHR) is observed for the S = 0 several crank angles prior to the spark command and ITHR magnitude is a function of increasing intake temperature. As intake temperature continued to increase, the S=0 fuel transitioned from ITHR to low-temperature heat release (LTHR) prior to the spark event. At the highest load and intake temperature, 95 C, the S=0 fuel exhibits distinct LTHR and negative temperature coefficient (NTC), and the intermediate S value fuel (S=6.5) exhibited distinct ITHR behavior several crank angles prior to the spark command. However, for the tested conditions, the S=12 fuel exhibits neither ITHR nor LTHR. To understand the measured trends, chemical kinetic modeling is used to elucidate the fuel specific dependencies on in-cylinder temperature and pressure history. Lastly, the bulk gas composition change that occurs for fuels and conditions exhibiting ITHR and LTHR is analyzed in the modeling, including their implications on flame speed and combustion stability at late phasing. Furthermore, the combined findings illustrate the commonality and utility of fuel S, ITHR, LTHR, and NTC across a wide range of conditions, and the associated implications of fuel S in highly boosted modern GDI SI engines relative to the RON and MON tests.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.