DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron Heating in 2D Particle-in-cell Simulations of Quasi-perpendicular Low-beta Shocks

Abstract

Abstract We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta ( β p = 0.25) collisionless ion–electron shocks with mass ratio m i / m e = 200, fast Mach number M ms = 1 –4, and upstream magnetic field angle θ Bn = 55°–85° from the shock normal n ˆ . It is known that shock electron heating is described by an ambipolar, B -parallel electric potential jump, Δ ϕ , that scales roughly linearly with the electron temperature jump. Our simulations have Δ ϕ / ( 0.5 m i u sh 2 ) 0.1 –0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measure ϕ , including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate of ϕ in our low- β p shocks. We further focus on two θ Bn = 65° shocks: a M s = 4 ( M A = 1.8 ) case with a long, 30 d i precursor of whistler waves along n ˆ , and a M s = 7 ( M A = 3.2 ) case with a shorter, 5 d i precursor of whistlers oblique to both n ˆ and B ; d i is the ion skin depth. Within the precursors, ϕ has a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of the M s = 4 , θ Bn = 65° case, ϕ shows a weak dependence on the electron plasma-to-cyclotron frequency ratio ω pece , and ϕ decreases by a factor of 2 as m i / m e is raised to the true proton–electron value of 1836.

Authors:
ORCiD logo; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
2332919
Grant/Contract Number:  
SC0023015
Resource Type:
Published Article
Journal Name:
The Astrophysical Journal
Additional Journal Information:
Journal Name: The Astrophysical Journal Journal Volume: 965 Journal Issue: 1; Journal ID: ISSN 0004-637X
Publisher:
American Astronomical Society
Country of Publication:
United States
Language:
English

Citation Formats

Tran, Aaron, and Sironi, Lorenzo. Electron Heating in 2D Particle-in-cell Simulations of Quasi-perpendicular Low-beta Shocks. United States: N. p., 2024. Web. doi:10.3847/1538-4357/ad1f69.
Tran, Aaron, & Sironi, Lorenzo. Electron Heating in 2D Particle-in-cell Simulations of Quasi-perpendicular Low-beta Shocks. United States. https://doi.org/10.3847/1538-4357/ad1f69
Tran, Aaron, and Sironi, Lorenzo. Tue . "Electron Heating in 2D Particle-in-cell Simulations of Quasi-perpendicular Low-beta Shocks". United States. https://doi.org/10.3847/1538-4357/ad1f69.
@article{osti_2332919,
title = {Electron Heating in 2D Particle-in-cell Simulations of Quasi-perpendicular Low-beta Shocks},
author = {Tran, Aaron and Sironi, Lorenzo},
abstractNote = {Abstract We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta ( β p = 0.25) collisionless ion–electron shocks with mass ratio m i / m e = 200, fast Mach number M ms = 1 –4, and upstream magnetic field angle θ Bn = 55°–85° from the shock normal n ˆ . It is known that shock electron heating is described by an ambipolar, B -parallel electric potential jump, Δ ϕ ∥ , that scales roughly linearly with the electron temperature jump. Our simulations have Δ ϕ ∥ / ( 0.5 m i u sh 2 ) ∼ 0.1 –0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measure ϕ ∥ , including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate of ϕ ∥ in our low- β p shocks. We further focus on two θ Bn = 65° shocks: a M s = 4 ( M A = 1.8 ) case with a long, 30 d i precursor of whistler waves along n ˆ , and a M s = 7 ( M A = 3.2 ) case with a shorter, 5 d i precursor of whistlers oblique to both n ˆ and B ; d i is the ion skin depth. Within the precursors, ϕ ∥ has a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of the M s = 4 , θ Bn = 65° case, ϕ ∥ shows a weak dependence on the electron plasma-to-cyclotron frequency ratio ω pe /Ω ce , and ϕ ∥ decreases by a factor of 2 as m i / m e is raised to the true proton–electron value of 1836.},
doi = {10.3847/1538-4357/ad1f69},
journal = {The Astrophysical Journal},
number = 1,
volume = 965,
place = {United States},
year = {Tue Apr 02 00:00:00 EDT 2024},
month = {Tue Apr 02 00:00:00 EDT 2024}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.3847/1538-4357/ad1f69

Save / Share:

Works referenced in this record:

Ion heating in oblique low-Mach number shocks
journal, October 1997


The structure of perpendicular bow shocks
journal, July 1982

  • Leroy, M. M.; Winske, D.; Goodrich, C. C.
  • Journal of Geophysical Research: Space Physics, Vol. 87, Issue A7
  • DOI: 10.1029/JA087iA07p05081

Quasi-adiabatic and Stochastic Heating and Particle Acceleration at Quasi-perpendicular Shocks
journal, November 2020


Electron dynamics in two‐ and one‐dimensional oblique supercritical collisionless magnetosonic shocks
journal, April 1994

  • Savoini, Philippe; Lembege, Bertrand
  • Journal of Geophysical Research: Space Physics, Vol. 99, Issue A4
  • DOI: 10.1029/93JA03330

A review of the physics of electron heating at collisionless shocks
journal, January 1995


Low-Frequency Instabilities in Magnetic Pulses
journal, November 1971


Low Frequency Waves at and Upstream of Collisionless Shocks
book, February 2016


Simulations of high Mach number perpendicular shocks with resistive electrons
journal, August 1986


Electron velocity distributions near the Earth's bow shock
journal, January 1983

  • Feldman, W. C.; Anderson, R. C.; Bame, S. J.
  • Journal of Geophysical Research, Vol. 88, Issue A1
  • DOI: 10.1029/JA088iA01p00096

Electron heating and phase space signatures at strong and weak quasi-perpendicular shocks
journal, February 1998

  • Hull, A. J.; Scudder, J. D.; Frank, L. A.
  • Journal of Geophysical Research: Space Physics, Vol. 103, Issue A2
  • DOI: 10.1029/97JA03058

Mach number dependence of electron heating in high Mach number quasiperpendicular shocks
journal, April 2010


Generation of High-frequency Whistler Waves in the Earth’s Quasi-perpendicular Bow Shock
journal, September 2021

  • Page, Brent; Vasko, Ivan Y.; Artemyev, Anton V.
  • The Astrophysical Journal Letters, Vol. 919, Issue 2
  • DOI: 10.3847/2041-8213/ac2748

Microinstabilities associated with a high Mach number, perpendicular bow shock
journal, January 1984

  • Wu, C. S.; Winske, D.; Zhou, Y. M.
  • Space Science Reviews, Vol. 37, Issue 1-2
  • DOI: 10.1007/BF00213958

Numerical simulation of electron distributions upstream and downstream of high Mach number quasi‐perpendicular collisionless shocks
journal, August 2008

  • Yuan, Xingqiu; Cairns, Iver H.; Robinson, Peter A.
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A8
  • DOI: 10.1029/2008JA013268

The structure of oblique subcritical bow shocks: ISEE 1 and 2 observations
journal, January 1984

  • Mellott, M. M.; Greenstadt, E. W.
  • Journal of Geophysical Research, Vol. 89, Issue A4
  • DOI: 10.1029/JA089iA04p02151

Steepening of kinetic magnetosonic waves into shocklets: Simulations and consequences for planetary shocks and comets
journal, January 1990


Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing
journal, January 2003


Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth’s Bow Shock
journal, November 2016


Electron dynamics and cross-shock potential at the quasi-perpendicular Earth's bow shock: ELECTRON DYNAMICS AND SHOCK POTENTIAL
journal, September 2007

  • Lefebvre, Bertrand; Schwartz, Steven J.; Fazakerley, Andrew F.
  • Journal of Geophysical Research: Space Physics, Vol. 112, Issue A9
  • DOI: 10.1029/2007JA012277

Spacecraft Observations and Theoretical Understanding of Slow Electron Holes
journal, October 2021


The resolved layer of a collisionless, high β, supercritical, quasi-perpendicular shock wave: 3. Vlasov electrodynamics
journal, January 1986

  • Scudder, J. D.; Mangeney, A.; Lacombe, C.
  • Journal of Geophysical Research, Vol. 91, Issue A10
  • DOI: 10.1029/JA091iA10p11075

Adaptation of the de Hoffmann–Teller frame for quasi-perpendicular collisionless shocks
journal, March 2015


Magnetic reconnection and kinetic waves generated in the Earth's quasi-parallel bow shock
journal, September 2020

  • Bessho, N.; Chen, L. -J.; Wang, S.
  • Physics of Plasmas, Vol. 27, Issue 9
  • DOI: 10.1063/5.0012443

The structure of magneto-hydrodynamic shock waves
journal, December 1955

  • Marshall, W.
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 233, Issue 1194, p. 367-376
  • DOI: 10.1098/rspa.1955.0272

Electron cross talk and asymmetric electron distributions near the Earth's bowshock
journal, March 2012


Observational Evidence for Stochastic Shock Drift Acceleration of Electrons at the Earth’s Bow Shock
journal, February 2020


Preacceleration in the Electron Foreshock. I. Electron Acoustic Waves
journal, June 2022

  • Morris, Paul J.; Bohdan, Artem; Weidl, Martin S.
  • The Astrophysical Journal, Vol. 931, Issue 2
  • DOI: 10.3847/1538-4357/ac69c7

Cross‐Shock Electrostatic Potentials at Mars Inferred From MAVEN Measurements
journal, March 2021

  • Xu, Shaosui; Schwartz, Steven J.; Mitchell, David L.
  • Journal of Geophysical Research: Space Physics, Vol. 126, Issue 3
  • DOI: 10.1029/2020JA029064

Electron dynamics and whistler waves at quasi‐perpendicular shocks
journal, August 1995

  • Krauss‐Varban, D.; Pantellini, F. G. E.; Burgess, D.
  • Geophysical Research Letters, Vol. 22, Issue 16
  • DOI: 10.1029/95GL01782

Electron‐Scale Reconnection in Three‐Dimensional Shock Turbulence
journal, August 2022

  • Ng, J.; Chen, L. ‐J.; Bessho, N.
  • Geophysical Research Letters, Vol. 49, Issue 15
  • DOI: 10.1029/2022GL099544

Dispersive Nature of High Mach Number Collisionless Plasma Shocks: Poynting Flux of Oblique Whistler Waves
journal, January 2012


The Discrepancy Between Simulation and Observation of Electric Fields in Collisionless Shocks
journal, January 2021

  • Wilson, Lynn B.; Chen, Li-Jen; Roytershteyn, Vadim
  • Frontiers in Astronomy and Space Sciences, Vol. 7
  • DOI: 10.3389/fspas.2020.592634

Electron Bulk Acceleration and Thermalization at Earth’s Quasiperpendicular Bow Shock
journal, May 2018


Solitary Waves Across Supercritical Quasi‐Perpendicular Shocks
journal, June 2018

  • Vasko, I. Y.; Mozer, F. S.; Krasnoselskikh, V. V.
  • Geophysical Research Letters, Vol. 45, Issue 12
  • DOI: 10.1029/2018GL077835

The field‐aligned flow approximation for electrons within layers possessing a normal mass flux: A corollary to the deHoffmann‐Teller Theorem
journal, December 1987


MMS Observations of Electrostatic Waves in an Oblique Shock Crossing
journal, November 2018

  • Goodrich, Katherine A.; Ergun, Robert; Schwartz, Steven J.
  • Journal of Geophysical Research: Space Physics, Vol. 123, Issue 11
  • DOI: 10.1029/2018JA025830

ARTEMIS Observations of Plasma Waves in Laminar and Perturbed Interplanetary Shocks
journal, June 2021

  • Davis, L. A.; Cattell, C. A.; Wilson, L. B.
  • The Astrophysical Journal, Vol. 913, Issue 2
  • DOI: 10.3847/1538-4357/abf56a

Electron Scattering by High-frequency Whistler Waves at Earth’s Bow Shock
journal, June 2017


Electron temperature and de Hoffmann-Teller potential change across the Earth's bow shock: New results from ISEE 1
journal, September 2000

  • Hull, A. J.; Scudder, J. D.; Fitzenreiter, R. J.
  • Journal of Geophysical Research: Space Physics, Vol. 105, Issue A9
  • DOI: 10.1029/2000JA900049

Subcritcal dispersive shock waves upstream of planetary bow shocks and at comet Giacobini‐Zinner
journal, October 1988


A parametric survey of the first critical Mach number for a fast MHD shock
journal, December 1984


Whistler critical Mach number and electron acceleration at the bow shock: Geotail observation
journal, December 2006

  • Oka, M.; Terasawa, T.; Seki, Y.
  • Geophysical Research Letters, Vol. 33, Issue 24
  • DOI: 10.1029/2006GL028156

Magnetic structure of the low beta, quasi‐perpendicular shock
journal, September 1993

  • Farris, M. H.; Russell, C. T.; Thomsen, M. F.
  • Journal of Geophysical Research: Space Physics, Vol. 98, Issue A9
  • DOI: 10.1029/93JA00958

Electron acceleration at quasi-perpendicular shocks in sub- and supercritical regimes: 2D and 3D simulations
journal, October 2018

  • Trotta, D.; Burgess, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 482, Issue 1
  • DOI: 10.1093/mnras/sty2756

Structure of the quasi-perpendicular laminar bow shock
journal, February 1975

  • Greenstadt, E. W.; Russell, C. T.; Scarf, F. L.
  • Journal of Geophysical Research, Vol. 80, Issue 4
  • DOI: 10.1029/JA080i004p00502

Electron Resonant Interaction With Whistler Waves Around Foreshock Transients and the Bow Shock Behind the Terminator
journal, February 2022

  • Artemyev, A. V.; Shi, X.; Liu, T. Z.
  • Journal of Geophysical Research: Space Physics, Vol. 127, Issue 2
  • DOI: 10.1029/2021JA029820

An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas
journal, August 1983


Transition scale at quasiperpendicular collisionless shocks: Full particle electromagnetic simulations
journal, June 2006

  • Scholer, Manfred; Burgess, David
  • Physics of Plasmas, Vol. 13, Issue 6
  • DOI: 10.1063/1.2207126

Realistic Electron Diffusion Rates and Lifetimes Due to Scattering by Electron Holes
journal, August 2021

  • Shen, Yangyang; Vasko, Ivan Y.; Artemyev, Anton
  • Journal of Geophysical Research: Space Physics, Vol. 126, Issue 9
  • DOI: 10.1029/2021JA029380

Upstream whistlers generated by protons reflected from a quasi‐perpendicular shock
journal, May 1997

  • Hellinger, P.; Mangeney, A.
  • Journal of Geophysical Research: Space Physics, Vol. 102, Issue A5
  • DOI: 10.1029/96JA03826

Electron Heating in Perpendicular Low-beta Shocks
journal, September 2020


Electron ‐ whistler interaction at the Earth's bow shock: 2. Electron pitch angle diffusion
journal, August 1993

  • Veltri, P.; Zimbardo, G.
  • Journal of Geophysical Research: Space Physics, Vol. 98, Issue A8
  • DOI: 10.1029/93JA01144

The plasma physics of shock acceleration
journal, December 1991

  • Jones, Frank C.; Ellison, Donald C.
  • Space Science Reviews, Vol. 58, Issue 1
  • DOI: 10.1007/BF01206003

On the noncoplanarity of the magnetic field within a fast collisionless shock
journal, March 1987

  • Thomsen, M. F.; Gosling, J. T.; Bame, S. J.
  • Journal of Geophysical Research: Space Physics, Vol. 92, Issue A3
  • DOI: 10.1029/JA092iA03p02305

Electron acceleration and heating influenced by whistler wave packets at quasi‐parallel shock waves
journal, July 2002

  • Nishimura, Kazumi; Matsumoto, Hiroshi; Kojima, Hirotsugu
  • Journal of Geophysical Research: Space Physics, Vol. 107, Issue A7
  • DOI: 10.1029/2001JA000157

Particle acceleration at oblique shock fronts
journal, August 1989

  • Kirk, J. G.; Heavens, A. F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 239, Issue 3
  • DOI: 10.1093/mnras/239.3.995

Nonstationarity of strong collisionless quasiperpendicular shocks: Theory and full particle numerical simulations
journal, April 2002

  • Krasnoselskikh, V. V.; Lembège, B.; Savoini, P.
  • Physics of Plasmas, Vol. 9, Issue 4
  • DOI: 10.1063/1.1457465

Electron heating in quasi‐perpendicular shocks: A Monte Carlo Simulation
journal, September 1990

  • Veltri, Pierluigi; Mangeney, André; Scudder, Jack D.
  • Journal of Geophysical Research: Space Physics, Vol. 95, Issue A9
  • DOI: 10.1029/JA095iA09p14939

Strong reconnection electric fields in shock-driven turbulence
journal, April 2022

  • Bessho, N.; Chen, L. -J.; Stawarz, J. E.
  • Physics of Plasmas, Vol. 29, Issue 4
  • DOI: 10.1063/5.0077529

Whistler waves associated with weak interplanetary shocks
journal, November 2012

  • Ramírez Vélez, J. C.; Blanco‐Cano, X.; Aguilar‐Rodriguez, E.
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A11
  • DOI: 10.1029/2012JA017573

Standing waves at low Mach number laminar bow shocks
journal, February 1975


Model for the partition of temperature between electrons and ions across collisionless, fast mode shocks
journal, December 2000

  • Hull, A. J.; Scudder, J. D.
  • Journal of Geophysical Research: Space Physics, Vol. 105, Issue A12
  • DOI: 10.1029/2000JA900105

Electron velocity distributions near interplantary shocks
journal, January 1983

  • Feldman, W. C.; Anderson, R. C.; Bame, S. J.
  • Journal of Geophysical Research, Vol. 88, Issue A12
  • DOI: 10.1029/JA088iA12p09949

Electron heating and the potential jump across fast mode shocks
journal, January 1988

  • Schwartz, Steven J.; Thomsen, Michelle F.; Bame, S. J.
  • Journal of Geophysical Research, Vol. 93, Issue A11
  • DOI: 10.1029/JA093iA11p12923

Discontinuous Galerkin algorithms for fully kinetic plasmas
journal, January 2018


Evaluating the deHoffmann‐Teller Cross‐Shock Potential at Real Collisionless Shocks
journal, August 2021

  • Schwartz, Steven J.; Ergun, Robert; Kucharek, Harald
  • Journal of Geophysical Research: Space Physics, Vol. 126, Issue 8
  • DOI: 10.1029/2021JA029295

Observations of Energized Electrons in the Martian Magnetosheath
journal, April 2021

  • Horaites, K.; Andersson, L.; Schwartz, S. J.
  • Journal of Geophysical Research: Space Physics, Vol. 126, Issue 4
  • DOI: 10.1029/2020JA028984

Non-adiabatic electron behaviour due to short-scale electric field structures at collisionless shock waves
journal, January 2013


Microturbulence in the electron cyclotron frequency range at perpendicular supercritical shocks: ELECTRON CYCLOTRON DRIFT INSTABILITY
journal, May 2013

  • Muschietti, L.; Lembège, B.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 5
  • DOI: 10.1002/jgra.50224

Heating and acceleration of electrons through the whistler precursor in 1-D and 2-D oblique shocks
journal, January 1995


Plasma heating through a supercritical oblique collisionless shock
journal, April 1987

  • Lembège, B.; Dawson, J. M.
  • The Physics of Fluids, Vol. 30, Issue 4
  • DOI: 10.1063/1.866309

Effect of strong thermalization on shock dynamical behavior
journal, January 2005


Numerical studies of electron dynamics in oblique quasi‐perpendicular collisionless shock waves
journal, June 1991

  • Liewer, P. C.; Decyk, V. K.; Dawson, J. M.
  • Journal of Geophysical Research: Space Physics, Vol. 96, Issue A6
  • DOI: 10.1029/91JA00655

Intense Whistler-mode Waves at Foreshock Transients: Characteristics and Regimes of Wave−Particle Resonant Interaction
journal, February 2023


Modified two-stream instability at perpendicular collisionless shocks: Full particle simulations
journal, March 2012

  • Umeda, Takayuki; Kidani, Yoshitaka; Matsukiyo, Shuichi
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A3
  • DOI: 10.1029/2011JA017182

Electron ‐ whistler interaction at the Earth's bow shock: 1. Whistler instability
journal, August 1993

  • Veltri, P.; Zimbardo, G.
  • Journal of Geophysical Research: Space Physics, Vol. 98, Issue A8
  • DOI: 10.1029/93JA00812

Direct evidence of nonstationary collisionless shocks in space plasmas
journal, February 2019

  • Dimmock, Andrew P.; Russell, Christopher T.; Sagdeev, Roald Z.
  • Science Advances, Vol. 5, Issue 2
  • DOI: 10.1126/sciadv.aau9926

Whistler Waves in the Foot of Quasi‐Perpendicular Supercritical Shocks
journal, May 2022

  • Lalti, Ahmad; Khotyaintsev, Yuri V.; Graham, Daniel B.
  • Journal of Geophysical Research: Space Physics, Vol. 127, Issue 5
  • DOI: 10.1029/2021JA029969

The electron foreshock at high-Mach-number non-relativistic oblique shocks
journal, May 2022

  • Bohdan, Artem; Weidl, Martin S.; Morris, Paul J.
  • Physics of Plasmas, Vol. 29, Issue 5
  • DOI: 10.1063/5.0084544

Electron Injection by Whistler Waves in Non-Relativistic Shocks
journal, May 2011


Theory of Stochastic Shock Drift Acceleration for Electrons in the Shock Transition Region
journal, March 2019


Non adiabatic electron behavior through a supercritical perpendicular collisionless shock: Impact of the shock front turbulence
journal, November 2010

  • Savoini, P.; Lembege, B.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A11
  • DOI: 10.1029/2010JA015381

Shock-drift particle acceleration in superluminal shocks - A model for hot spots in extragalactic radio sources
journal, April 1990

  • Begelman, Mitchell C.; Kirk, John G.
  • The Astrophysical Journal, Vol. 353
  • DOI: 10.1086/168590

Electron Scattering by Low-frequency Whistler Waves at Earth’s Bow Shock
journal, November 2019


Electrostatic Steepening of Whistler Waves
journal, May 2018


Dynamics of energetic electrons in nonstationary quasi-perpendicular shocks: ENERGETIC ELECTRONS IN NONSTATIONARY SHOCKS
journal, November 2012

  • Matsukiyo, Shuichi; Scholer, Manfred
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A11
  • DOI: 10.1029/2012JA017986

Dependence of kinetic plasma waves on ion-to-electron mass ratio and light-to-Alfvén speed ratio
journal, April 2020

  • Verscharen, Daniel; Parashar, Tulasi N.; Gary, S. Peter
  • Monthly Notices of the Royal Astronomical Society, Vol. 494, Issue 2
  • DOI: 10.1093/mnras/staa977

Collisionless Electron Dynamics in the Magnetosheath of Mars
journal, November 2019

  • Schwartz, S. J.; Andersson, L.; Xu, S.
  • Geophysical Research Letters, Vol. 46, Issue 21
  • DOI: 10.1029/2019GL085037

Emission of plasma waves by the Earth's bow shock
journal, March 1968


Electromagnetic ion beam instabilities: Oblique pulsations
journal, March 1999

  • Hellinger, P.; Mangeney, A.
  • Journal of Geophysical Research: Space Physics, Vol. 104, Issue A3
  • DOI: 10.1029/1998JA900157

Multiscale whistler waves within Earth's perpendicular bow shock
journal, December 2012

  • Hull, A. J.; Muschietti, L.; Oka, M.
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A12
  • DOI: 10.1029/2012JA017870

Instability of the Whistler Structure of Oblique Hydromagnetic Shocks
journal, October 1972


Nonlocal electron heating at the Earth's bow shock and the role of the magnetically tangent point
journal, December 2013

  • Mitchell, J. J.; Schwartz, S. J.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 12
  • DOI: 10.1002/2013JA019226

Electrostatic Solitary Waves in the Earth's Bow Shock: Nature, Properties, Lifetimes, and Origin
journal, July 2021

  • Wang, R.; Vasko, I. Y.; Mozer, F. S.
  • Journal of Geophysical Research: Space Physics, Vol. 126, Issue 7
  • DOI: 10.1029/2021JA029357

Electron Heating Scales in Collisionless Shocks Measured by MMS
journal, March 2023

  • Johlander, Andreas; Khotyaintsev, Yuri V.; Dimmock, Andrew P.
  • Geophysical Research Letters, Vol. 50, Issue 5
  • DOI: 10.1029/2022GL100400

Structure of perpendicular shocks in collisionless plasma
journal, January 1983


Unified View of Nonlinear Wave Structures Associated with Whistler-Mode Chorus
journal, January 2019


MMS Observations of Intense Whistler Waves Within Earth's Supercritical Bow Shock: Source Mechanism and Impact on Shock Structure and Plasma Transport
journal, July 2020

  • Hull, A. J.; Muschietti, L.; Le Contel, O.
  • Journal of Geophysical Research: Space Physics, Vol. 125, Issue 7
  • DOI: 10.1029/2019JA027290

The structure of hydromagnetic shock waves
journal, March 1971


Comment on “Electron demagnetization and heating in quasi-perpendicular shocks” by Mozer and Sundkvist
journal, March 2014

  • Schwartz, Steven J.
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 3
  • DOI: 10.1002/2013JA019624

Impact of Shock Front Rippling and Self-reformation on the Electron Dynamics at Low-Mach-number Shocks
journal, April 2018


On the nonstationarity of collisionless shocks and its impact on deriving the cross‐shock potential
journal, July 2017

  • Marghitu, Octav; Comişel, Horia; Scholer, Manfred
  • Geophysical Research Letters, Vol. 44, Issue 13
  • DOI: 10.1002/2017GL073241

Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism
journal, December 2017

  • Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh
  • The Astrophysical Journal, Vol. 851, Issue 2
  • DOI: 10.3847/1538-4357/aa9b82

Observations of electromagnetic whistler precursors at supercritical interplanetary shocks: WHISTLER PRECURSORS-PARTICLES
journal, April 2012

  • Wilson, L. B.; Koval, A.; Szabo, A.
  • Geophysical Research Letters, Vol. 39, Issue 8
  • DOI: 10.1029/2012GL051581

Noncoplanar magnetic field in the collisionless shock front
journal, May 1996

  • Gedalin, M.
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A5
  • DOI: 10.1029/96JA00518

Plasma heating at collisionless shocks due to the kinetic cross‐field streaming instability
journal, January 1985

  • Winske, D.; Tanaka, Motohiko; Wu, C. S.
  • Journal of Geophysical Research: Space Physics, Vol. 90, Issue A1
  • DOI: 10.1029/JA090iA01p00123

Theory and Simulation of Turbulent Heating by the Modified Two-Stream Instability
journal, January 1972


The resolved layer of a collisionless, high β, supercritical, quasi-perpendicular shock wave: 1. Rankine-Hugoniot geometry, currents, and stationarity
journal, January 1986

  • Scudder, J. D.; Mangeney, A.; Lacombe, C.
  • Journal of Geophysical Research, Vol. 91, Issue A10
  • DOI: 10.1029/JA091iA10p11019

Adiabatic charged-particle motion
journal, January 1963


On microinstabilities in the foot of high Mach number perpendicular shocks
journal, January 2006

  • Matsukiyo, S.; Scholer, M.
  • Journal of Geophysical Research, Vol. 111, Issue A6
  • DOI: 10.1029/2005JA011409

Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks
journal, January 2003


Whistler waves in 3D hybrid simulations of quasiperpendicular shocks
journal, March 1996

  • Hellinger, P.; Mangeney, A.; Matthews, A.
  • Geophysical Research Letters, Vol. 23, Issue 6
  • DOI: 10.1029/96GL00453

A Quarter Century of Collisionless Shock Research
book, March 2013

  • Kennel, C. F.; Edmiston, J. P.; Hada, T.
  • Collisionless Shocks in the Heliosphere: A Tutorial Review, Vol. 34
  • DOI: 10.1029/GM034p0001

Isothermal magnetosheath electrons due to nonlocal electron cross talk
journal, February 2014

  • Mitchell, J. J.; Schwartz, S. J.
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 2
  • DOI: 10.1002/2013JA019211

The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves
journal, January 1984


Non-Thermal Electron Acceleration in low mach Number Collisionless Shocks. i. Particle Energy Spectra and Acceleration Mechanism
journal, October 2014


Double Layers in the Earth's Bow Shock
journal, December 2022

  • Sun, J.; Vasko, I. Y.; Bale, S. D.
  • Geophysical Research Letters, Vol. 49, Issue 24
  • DOI: 10.1029/2022GL101348

Revisiting the structure of low-Mach number, low-beta, quasi-perpendicular shocks: SHOCK STRUCTURE
journal, September 2017

  • Wilson III, L. B.; Koval, A.; Szabo, A.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 9
  • DOI: 10.1002/2017JA024352

Collisionless dissipation in quasi‐perpendicular shocks
journal, April 1984

  • Forslund, D. W.; Quest, K. B.; Brackbill, J. U.
  • Journal of Geophysical Research: Space Physics, Vol. 89, Issue A4
  • DOI: 10.1029/JA089iA04p02142

Particle Acceleration in Relativistic Magnetized Collisionless pair Shocks: Dependence of Shock Acceleration on Magnetic Obliquity
journal, June 2009


Magnetic pumping model for energizing superthermal particles applied to observations of the Earth's bow shock
journal, June 2020


Electron heating and phase space signatures at supercritical, fast mode shocks
journal, August 2001

  • Hull, A. J.; Scudder, J. D.; Larson, D. E.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A8
  • DOI: 10.1029/2001JA900001

Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks
journal, July 2007

  • Scholer, Manfred; Burgess, David
  • Physics of Plasmas, Vol. 14, Issue 7
  • DOI: 10.1063/1.2748391