DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Thu Jul 25 00:00:00 EDT 2024

Title: 1.2-kV Vertical GaN PIN Rectifier With Ion-Implanted Floating Guard Rings

Abstract

Here, this work reports on the fabrication and properties of a homojunction gallium nitride (GaN) p-i-n (PIN) rectifier fabricated on a free-standing GaN substrate. Uniform device performance is achieved with breakdown voltage (BV) >1.2 kV and low ON-resistance × area ( RONA ). The statistics of the BV measurements show 58.5% of devices achieve BV >1.3 kV, and 71.1% of devices achieve BV >1.2 kV, as attributed to high quality and control in both epitaxial growth and device process. At room temperature, RONA is 0.23 mΩ∙ cm2 at a current density ( J ) of 6.9 kA/cm2. The corresponding Baliga’s figure of merit is >5.97 GW/cm2. Temperature-dependent reverse I – V measurements were performed and show a positive temperature coefficient of 0.42 V/K, indicating the avalanche capability of reverse breakdown. Further analysis with the Poole-Frenkel model on the temperature-dependent measurement suggested that a trap-assisted tunneling process contributed to the reverse leakage current. Floating guard rings (FGRs) formed by nitrogen implantation serve as an effective edge termination technique in these GaN PIN rectifiers, resulting in uniform performance in both forward and reverse bias.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [2];  [2];  [2];  [2];  [3];  [3];  [3]; ORCiD logo [1]; ORCiD logo [1]
  1. Georgia Institute of Technology, Atlanta, GA (United States)
  2. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
  3. SixPoint Materials, Buellton, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Energy Efficiency and Renewable Energy (EERE); National Science Foundation (NSF)
OSTI Identifier:
1996471
Report Number(s):
LLNL-JRNL-844039
Journal ID: ISSN 0018-9383; 1067145
Grant/Contract Number:  
AC52-07NA27344; ECCS-154217
Resource Type:
Accepted Manuscript
Journal Name:
IEEE Transactions on Electron Devices
Additional Journal Information:
Journal Volume: 70; Journal Issue: 9; Journal ID: ISSN 0018-9383
Publisher:
IEEE
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; Gallium nitride (GaN); PIN rectifiers; power devices; ion implantation; field guard rings; edge termination

Citation Formats

Cho, Minkyu, Xu, Zhiyu, Bakhtiary-Noodeh, Marzieh, Detchprohm, Theeradetch, Daeumer, Matthias A., Yoo, Jae-Hyuck, Shao, Qinghui, Laurence, Ted A., Key, Daryl, Hashimoto, Tadao, Letts, Edward, Dupuis, Russell D., and Shen, Shyh-Chiang. 1.2-kV Vertical GaN PIN Rectifier With Ion-Implanted Floating Guard Rings. United States: N. p., 2023. Web. doi:10.1109/ted.2023.3295767.
Cho, Minkyu, Xu, Zhiyu, Bakhtiary-Noodeh, Marzieh, Detchprohm, Theeradetch, Daeumer, Matthias A., Yoo, Jae-Hyuck, Shao, Qinghui, Laurence, Ted A., Key, Daryl, Hashimoto, Tadao, Letts, Edward, Dupuis, Russell D., & Shen, Shyh-Chiang. 1.2-kV Vertical GaN PIN Rectifier With Ion-Implanted Floating Guard Rings. United States. https://doi.org/10.1109/ted.2023.3295767
Cho, Minkyu, Xu, Zhiyu, Bakhtiary-Noodeh, Marzieh, Detchprohm, Theeradetch, Daeumer, Matthias A., Yoo, Jae-Hyuck, Shao, Qinghui, Laurence, Ted A., Key, Daryl, Hashimoto, Tadao, Letts, Edward, Dupuis, Russell D., and Shen, Shyh-Chiang. Tue . "1.2-kV Vertical GaN PIN Rectifier With Ion-Implanted Floating Guard Rings". United States. https://doi.org/10.1109/ted.2023.3295767.
@article{osti_1996471,
title = {1.2-kV Vertical GaN PIN Rectifier With Ion-Implanted Floating Guard Rings},
author = {Cho, Minkyu and Xu, Zhiyu and Bakhtiary-Noodeh, Marzieh and Detchprohm, Theeradetch and Daeumer, Matthias A. and Yoo, Jae-Hyuck and Shao, Qinghui and Laurence, Ted A. and Key, Daryl and Hashimoto, Tadao and Letts, Edward and Dupuis, Russell D. and Shen, Shyh-Chiang},
abstractNote = {Here, this work reports on the fabrication and properties of a homojunction gallium nitride (GaN) p-i-n (PIN) rectifier fabricated on a free-standing GaN substrate. Uniform device performance is achieved with breakdown voltage (BV) >1.2 kV and low ON-resistance × area ( RONA ). The statistics of the BV measurements show 58.5% of devices achieve BV >1.3 kV, and 71.1% of devices achieve BV >1.2 kV, as attributed to high quality and control in both epitaxial growth and device process. At room temperature, RONA is 0.23 mΩ∙ cm2 at a current density ( J ) of 6.9 kA/cm2. The corresponding Baliga’s figure of merit is >5.97 GW/cm2. Temperature-dependent reverse I – V measurements were performed and show a positive temperature coefficient of 0.42 V/K, indicating the avalanche capability of reverse breakdown. Further analysis with the Poole-Frenkel model on the temperature-dependent measurement suggested that a trap-assisted tunneling process contributed to the reverse leakage current. Floating guard rings (FGRs) formed by nitrogen implantation serve as an effective edge termination technique in these GaN PIN rectifiers, resulting in uniform performance in both forward and reverse bias.},
doi = {10.1109/ted.2023.3295767},
journal = {IEEE Transactions on Electron Devices},
number = 9,
volume = 70,
place = {United States},
year = {Tue Jul 25 00:00:00 EDT 2023},
month = {Tue Jul 25 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 25, 2024
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Wafer-scale Fabrication of Vertical GaN p-n Diodes with Graded JTE Structures Using Multiple-zone Boron Implantation
conference, May 2022

  • Miura, Yoshinao; Hirai, Hirohisa; Nakajima, Akira
  • 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
  • DOI: 10.1109/ISPSD49238.2022.9813654

Potential for neutron and proton transmutation doping of GaN and Ga2O3
journal, January 2020

  • Logan, Julie V.; Frantz, Elias B.; Casias, Lilian K.
  • Materials Advances, Vol. 1, Issue 1
  • DOI: 10.1039/D0MA00017E

Near-infrared waveguide in gallium nitride single crystal produced by carbon ion implantation
journal, April 2017


5.0 kV breakdown-voltage vertical GaN p–n junction diodes
journal, February 2018

  • Ohta, Hiroshi; Hayashi, Kentaro; Horikiri, Fumimasa
  • Japanese Journal of Applied Physics, Vol. 57, Issue 4S
  • DOI: 10.7567/JJAP.57.04FG09

High Voltage Vertical GaN p-n Diodes With Avalanche Capability
journal, October 2013

  • Kizilyalli, Isik C.; Edwards, Andrew P.; Nie, Hui
  • IEEE Transactions on Electron Devices, Vol. 60, Issue 10
  • DOI: 10.1109/TED.2013.2266664

Nitrogen-Implanted Guard Rings for 600-V Quasi-Vertical GaN-on-Si Schottky Barrier Diodes With a BFOM of 0.26 GW/cm2
journal, November 2021

  • Guo, Xiaolu; Zhong, Yaozong; Zhou, Yu
  • IEEE Transactions on Electron Devices, Vol. 68, Issue 11
  • DOI: 10.1109/TED.2021.3108951

High Voltage Vertical GaN p-n Diodes With Hydrogen-Plasma Based Guard Rings
journal, January 2020

  • Fu, Houqiang; Fu, Kai; Alugubelli, Shanthan R.
  • IEEE Electron Device Letters, Vol. 41, Issue 1
  • DOI: 10.1109/LED.2019.2954123

Realization of GaN-based gain-guided blue laser diodes by helium ion implantation
journal, October 2019

  • Zhang, Qi; Zhang, Shuming; Zhang, Feng
  • Semiconductor Science and Technology, Vol. 34, Issue 11
  • DOI: 10.1088/1361-6641/ab429c

The trap states in lightly Mg-doped GaN grown by MOVPE on a freestanding GaN substrate
journal, March 2018

  • Narita, Tetsuo; Tokuda, Yutaka; Kogiso, Tatsuya
  • Journal of Applied Physics, Vol. 123, Issue 16
  • DOI: 10.1063/1.5010849

Designing Beveled Edge Termination in GaN Vertical p-i-n Diode-Bevel Angle, Doping, and Passivation
journal, June 2020


Identification of donors, acceptors, and traps in bulk-like HVPE GaN
journal, July 2005


High Performance Vertical GaN-on-GaN p-n Power Diodes With Hydrogen-Plasma-Based Edge Termination
journal, July 2018


Near unity ideality factor and Shockley-Read-Hall lifetime in GaN-on-GaN p-n diodes with avalanche breakdown
journal, December 2015

  • Hu, Zongyang; Nomoto, Kazuki; Song, Bo
  • Applied Physics Letters, Vol. 107, Issue 24
  • DOI: 10.1063/1.4937436

Effects of proton implantation on electrical and recombination properties of n-GaN
journal, November 2000


High voltage, high current GaN-on-GaN p-n diodes with partially compensated edge termination
journal, July 2018

  • Wang, Jingshan; Cao, Lina; Xie, Jinqiao
  • Applied Physics Letters, Vol. 113, Issue 2
  • DOI: 10.1063/1.5035267

On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors
journal, October 1938


1200-V GaN-on-Si Quasi-Vertical p-n Diodes
journal, December 2022


Temperature-Dependent Characteristics of GaN Homojunction Rectifiers
journal, August 2015

  • Kao, Tsung-Ting; Kim, Jeomoh; Lee, Yi-Che
  • IEEE Transactions on Electron Devices, Vol. 62, Issue 8
  • DOI: 10.1109/TED.2015.2443135

Ion implantation induced nitrogen defects in GaN
journal, October 2015


A New JTE Technique for Vertical GaN Power Devices by Conductivity Control Using Boron Implantation into p-Type Layer
conference, May 2021

  • Miura, Yoshinao; Hirai, Hirohisa; Nakajima, Akira
  • 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD)
  • DOI: 10.23919/ISPSD50666.2021.9452219

Lattice disorder and N elemental segregation in ion implanted GaN epilayer
journal, January 2020


High performance GaN pin rectifiers grown on free-standing GaN substrates
journal, January 2006

  • Limb, J. B.; Yoo, D.; Ryou, J. -H.
  • Electronics Letters, Vol. 42, Issue 22
  • DOI: 10.1049/el:20062261

1.7-kV and 0.55-$\text{m}\Omega \cdot \text {cm}^{2}$ GaN p-n Diodes on Bulk GaN Substrates With Avalanche Capability
journal, February 2016


Temperature-Dependent Leakage Current Characteristics of Homojunction GaN p-i-n Rectifiers Using Ion-Implantation Isolation
journal, October 2019

  • Tsou, Chuan-Wei; Ji, Mi-Hee; Bakhtiary-Noodeh, Marzieh
  • IEEE Transactions on Electron Devices, Vol. 66, Issue 10
  • DOI: 10.1109/TED.2019.2933421

1.1-kV Vertical GaN p-n Diodes With p-GaN Regrown by Molecular Beam Epitaxy
journal, August 2017


Suppression of Green Luminescence of Mg‐Ion‐Implanted GaN by Subsequent Implantation of Fluorine Ions at High Temperature
journal, April 2020

  • Takahashi, Masahiro; Tanaka, Atsushi; Ando, Yuto
  • physica status solidi (b), Vol. 257, Issue 4
  • DOI: 10.1002/pssb.201900554

High-Breakdown-Voltage and Low-Specific-on-Resistance GaN p–n Junction Diodes on Free-Standing GaN Substrates Fabricated Through Low-Damage Field-Plate Process
journal, February 2013

  • Hatakeyama, Yoshitomo; Nomoto, Kazuki; Terano, Akihisa
  • Japanese Journal of Applied Physics, Vol. 52, Issue 2R
  • DOI: 10.7567/JJAP.52.028007

Avalanche Capability of Vertical GaN p-n Junctions on Bulk GaN Substrates
journal, September 2015


Effective Leakage Current Reduction in GaN Ultraviolet Avalanche Photodiodes With an Ion-Implantation Isolation Method
journal, June 2021

  • Cho, Minkyu; Xu, Zhiyu; Bakhtiary-Noodeh, Marzieh
  • IEEE Transactions on Electron Devices, Vol. 68, Issue 6
  • DOI: 10.1109/TED.2021.3069153

Vertical GaN merged PiN Schottky diode with a breakdown voltage of 2 kV
journal, May 2017

  • Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko
  • Applied Physics Express, Vol. 10, Issue 6
  • DOI: 10.7567/APEX.10.061003

Vertical and lateral GaN rectifiers on free-standing GaN substrates
journal, September 2001

  • Zhang, A. P.; Johnson, J. W.; Luo, B.
  • Applied Physics Letters, Vol. 79, Issue 10
  • DOI: 10.1063/1.1400771

Identification of Trap States in p-GaN Layer of a p-GaN/AlGaN/GaN Power HEMT Structure by Deep-Level Transient Spectroscopy
journal, May 2020


Design of Ion-Implanted Junction Termination Extension for Vertical GaN Pin Rectifiers
journal, September 2020

  • Cho, Minkyu; Xu, Zhiyu; Bakhtiary-Noodeh, Marzieh
  • ECS Transactions, Vol. 98, Issue 6
  • DOI: 10.1149/09806.0049ecst

Deep traps in GaN-based structures as affecting the performance of GaN devices
journal, August 2015


Design and Fabrication of GaN p-n Junction Diodes With Negative Beveled-Mesa Termination
journal, June 2019

  • Maeda, Takuya; Narita, Tetsuo; Ueda, Hiroyuki
  • IEEE Electron Device Letters, Vol. 40, Issue 6
  • DOI: 10.1109/LED.2019.2912395

High breakdown voltage vertical GaN p-n junction diodes using guard ring structures
conference, June 2017

  • Ohta, Hiroshi; Hayashi, Kentaro; Nakamura, Tohru
  • 2017 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK)
  • DOI: 10.1109/IMFEDK.2017.7998039

Ion implanted GaN MISFETs fabricated in Mg implanted layers activated by conventional rapid thermal annealing
journal, June 2019

  • Yoshino, Michitaka; Sugamata, Kota; Ikeda, Kiyoji
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 449
  • DOI: 10.1016/j.nimb.2019.04.008

Effects of carbon on ion-implantation-induced disorder in GaN
journal, December 2007

  • Kucheyev, S. O.; Bradby, J. E.; Li, C. P.
  • Applied Physics Letters, Vol. 91, Issue 26
  • DOI: 10.1063/1.2827587

Hole traps related to nitrogen displacement in p-type GaN grown by metalorganic vapor phase epitaxy on freestanding GaN
journal, April 2022

  • Endo, Meguru; Horita, Masahiro; Suda, Jun
  • Applied Physics Letters, Vol. 120, Issue 14
  • DOI: 10.1063/5.0086535

Analysis of intrinsic reverse leakage current resulting from band-to-band tunneling in dislocation-free GaN p–n junctions
journal, October 2021

  • Shoji, Tomoyuki; Narita, Tetsuo; Nagasato, Yoshitaka
  • Applied Physics Express, Vol. 14, Issue 11
  • DOI: 10.35848/1882-0786/ac2a03

Formation of definite GaN p–n junction by Mg-ion implantation to n−-GaN epitaxial layers grown on a high-quality free-standing GaN substrate
journal, December 2015

  • Oikawa, Takuya; Saijo, Yusuke; Kato, Shigeki
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 365
  • DOI: 10.1016/j.nimb.2015.07.095