DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Thu Aug 15 00:00:00 EDT 2024

Title: Laser-driven ramp-compression experiments on the national ignition facility

Abstract

This report details the analyses and related uncertainties in measuring longitudinal-stress–density paths in indirect laser-driven ramp equation-of-state (EOS) experiments. Experiments were conducted at the National Ignition Facility (NIF) located at the Lawrence Livermore National Laboratory. The NIF can deliver up to 2 MJ of laser energy over 30 ns and provide the necessary laser power and control to ramp compress materials to TPa pressures (1 TPa = 10 × 106 atmospheres). These data provide low-temperature solid-state EOS data relevant to the extreme conditions found in the deep interiors of giant planets. In these experiments, multi-stepped samples with thicknesses in the range of 40–120 µm experience an initial shock compression followed by a time-dependent ramp compression to peak pressure. Interface velocity measurements from each thickness combine to place a constraint on the Lagrangian sound speed as a function of particle velocity, which in turn allows for the determination of a continuous stress–density path to high levels of compressibility. In this report, we present a detailed description of the experimental techniques and measurement uncertainties and describe how these uncertainties combine to place a final uncertainty in both stress and density. Here, we address the effects of time-dependent deformation and the sensitivity ofmore » ramp EOS techniques to the onset of phase transformations.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
  2. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Gordon and Betty Moore Foundation, Palo Alto, CA (United States)
  3. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Raytheon Intelligence & Space, Princeton, TX (United States)
  4. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); University of Rochester, NY (United States). Laboratory for Laser Energetics
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1995411
Grant/Contract Number:  
NA0003856; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 94; Journal Issue: 8; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; Phase transitions; Shock compression; Speed of sound; Equations of state; Wave mechanics; Monte Carlo methods; Interferometry; Lasers; Streak cameras

Citation Formats

Smith, Raymond F., Volz, Travis J., Celliers, Peter M., Braun, David G., Swift, Damian C., Gorman, Martin G., Briggs, Richard, Fernandez-Pañella, Amalia, Kirsch, Leo E., Marshall, Michelle C., McNaney, James M., Eggert, Jon H., Fratanduono, Dayne E., and Ali, Suzanne J. Laser-driven ramp-compression experiments on the national ignition facility. United States: N. p., 2023. Web. doi:10.1063/5.0150031.
Smith, Raymond F., Volz, Travis J., Celliers, Peter M., Braun, David G., Swift, Damian C., Gorman, Martin G., Briggs, Richard, Fernandez-Pañella, Amalia, Kirsch, Leo E., Marshall, Michelle C., McNaney, James M., Eggert, Jon H., Fratanduono, Dayne E., & Ali, Suzanne J. Laser-driven ramp-compression experiments on the national ignition facility. United States. https://doi.org/10.1063/5.0150031
Smith, Raymond F., Volz, Travis J., Celliers, Peter M., Braun, David G., Swift, Damian C., Gorman, Martin G., Briggs, Richard, Fernandez-Pañella, Amalia, Kirsch, Leo E., Marshall, Michelle C., McNaney, James M., Eggert, Jon H., Fratanduono, Dayne E., and Ali, Suzanne J. Tue . "Laser-driven ramp-compression experiments on the national ignition facility". United States. https://doi.org/10.1063/5.0150031.
@article{osti_1995411,
title = {Laser-driven ramp-compression experiments on the national ignition facility},
author = {Smith, Raymond F. and Volz, Travis J. and Celliers, Peter M. and Braun, David G. and Swift, Damian C. and Gorman, Martin G. and Briggs, Richard and Fernandez-Pañella, Amalia and Kirsch, Leo E. and Marshall, Michelle C. and McNaney, James M. and Eggert, Jon H. and Fratanduono, Dayne E. and Ali, Suzanne J.},
abstractNote = {This report details the analyses and related uncertainties in measuring longitudinal-stress–density paths in indirect laser-driven ramp equation-of-state (EOS) experiments. Experiments were conducted at the National Ignition Facility (NIF) located at the Lawrence Livermore National Laboratory. The NIF can deliver up to 2 MJ of laser energy over 30 ns and provide the necessary laser power and control to ramp compress materials to TPa pressures (1 TPa = 10 × 106 atmospheres). These data provide low-temperature solid-state EOS data relevant to the extreme conditions found in the deep interiors of giant planets. In these experiments, multi-stepped samples with thicknesses in the range of 40–120 µm experience an initial shock compression followed by a time-dependent ramp compression to peak pressure. Interface velocity measurements from each thickness combine to place a constraint on the Lagrangian sound speed as a function of particle velocity, which in turn allows for the determination of a continuous stress–density path to high levels of compressibility. In this report, we present a detailed description of the experimental techniques and measurement uncertainties and describe how these uncertainties combine to place a final uncertainty in both stress and density. Here, we address the effects of time-dependent deformation and the sensitivity of ramp EOS techniques to the onset of phase transformations.},
doi = {10.1063/5.0150031},
journal = {Review of Scientific Instruments},
number = 8,
volume = 94,
place = {United States},
year = {Tue Aug 15 00:00:00 EDT 2023},
month = {Tue Aug 15 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 15, 2024
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
journal, November 2004

  • Celliers, P. M.; Bradley, D. K.; Collins, G. W.
  • Review of Scientific Instruments, Vol. 75, Issue 11
  • DOI: 10.1063/1.1807008

Ramp compression of diamond to five terapascals
journal, July 2014

  • Smith, R. F.; Eggert, J. H.; Jeanloz, R.
  • Nature, Vol. 511, Issue 7509
  • DOI: 10.1038/nature13526

Laser interferometer for measuring high velocities of any reflecting surface
journal, November 1972

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 43, Issue 11
  • DOI: 10.1063/1.1660986

Imaging VISAR diagnostic for the National Ignition Facility (NIF)
conference, March 2005

  • Malone, Robert M.; Bower, John R.; Bradley, David K.
  • 26th International Congress on High-Speed Photography and Photonics, SPIE Proceedings
  • DOI: 10.1117/12.579285

Experimental configuration for isentropic compression of solids using pulsed magnetic loading
journal, September 2001

  • Hall, C. A.; Asay, J. R.; Knudson, M. D.
  • Review of Scientific Instruments, Vol. 72, Issue 9, p. 3587-3595
  • DOI: 10.1063/1.1394178

Characteristic method for isentropic compression simulation
journal, May 2014

  • Xue, Quanxi; Wang, Zhebin; Jiang, Shaoen
  • AIP Advances, Vol. 4, Issue 5
  • DOI: 10.1063/1.4880039

Ultra-High Pressure Dynamic Compression of Geological Materials
journal, February 2019


Measurement of the principal isentropes of lead and lead–antimony alloy to ∼400 kbar by quasi-isentropic compression
journal, February 2005


Equation of state of iron under core conditions of large rocky exoplanets
journal, April 2018


Metastability of diamond ramp-compressed to 2 terapascals
journal, January 2021


Preliminary performance measurements for a streak camera with a large-format direct-coupled charge-coupled device readout
journal, October 2004

  • Lerche, R. A.; McDonald, J. W.; Griffith, R. L.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1788890

The application of line imaging velocimetry to provide high resolution spatially resolved velocity data in plate impact experiments
journal, November 2015


Multi-megabar Dynamic Strength Measurements of Ta, Au, Pt, and Ir
journal, August 2020

  • Brown, J. L.; Davis, J. -P.; Seagle, C. T.
  • Journal of Dynamic Behavior of Materials, Vol. 7, Issue 2
  • DOI: 10.1007/s40870-020-00256-6

High strain-rate plastic flow in Al and Fe
journal, December 2011

  • Smith, R. F.; Eggert, J. H.; Rudd, R. E.
  • Journal of Applied Physics, Vol. 110, Issue 12
  • DOI: 10.1063/1.3670001

Hysteresis in the high pressure transformation of bcc‐ to hcp‐iron
journal, April 1991

  • Taylor, R. D.; Pasternak, M. P.; Jeanloz, R.
  • Journal of Applied Physics, Vol. 69, Issue 8
  • DOI: 10.1063/1.348779

Unsteady compression waves in interferometer windows
journal, June 2001


Hugoniot experiments with unsteady waves
journal, July 2014

  • Fratanduono, D. E.; Munro, D. H.; Celliers, P. M.
  • Journal of Applied Physics, Vol. 116, Issue 3
  • DOI: 10.1063/1.4890014

Strong stabilization of the Rayleigh–Taylor instability by material strength at megabar pressures
journal, May 2010

  • Park, Hye-Sook; Remington, B. A.; Becker, R. C.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3363170

Ramp compression of iron to 273 GPa
journal, July 2013

  • Wang, Jue; Smith, Raymond F.; Eggert, Jon H.
  • Journal of Applied Physics, Vol. 114, Issue 2
  • DOI: 10.1063/1.4813091

A high-resolution two-dimensional imaging velocimeter
journal, March 2010

  • Celliers, P. M.; Erskine, D. J.; Sorce, C. M.
  • Review of Scientific Instruments, Vol. 81, Issue 3
  • DOI: 10.1063/1.3310076

An iterative forward analysis technique to determine the equation of state of dynamically compressed materials
journal, May 2017

  • Ali, S. J.; Kraus, R. G.; Fratanduono, D. E.
  • Journal of Applied Physics, Vol. 121, Issue 19
  • DOI: 10.1063/1.4983067

Magnetically driven isentropic compression experiments on the Z accelerator
journal, January 2001

  • Reisman, D. B.; Toor, A.; Cauble, R. C.
  • Journal of Applied Physics, Vol. 89, Issue 3, Article No. 1625
  • DOI: 10.1063/1.1337082

Velocity sensing interferometer (VISAR) modification
journal, January 1979

  • Hemsing, Willard F.
  • Review of Scientific Instruments, Vol. 50, Issue 1
  • DOI: 10.1063/1.1135672

An Algorithm for Least-Squares Estimation of Nonlinear Parameters
journal, June 1963

  • Marquardt, Donald W.
  • Journal of the Society for Industrial and Applied Mathematics, Vol. 11, Issue 2
  • DOI: 10.1137/0111030

A method for analyzing high-resolution time-domain streak camera calibration data
conference, October 2004

  • Silbernagel, Christopher T.; Torres III, Peter; Kalantar, Daniel H.
  • Optical Science and Technology, the SPIE 49th Annual Meeting, SPIE Proceedings
  • DOI: 10.1117/12.560040

A robust in-situ warp-correction algorithm for VISAR streak camera data at the National Ignition Facility
conference, February 2015

  • Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.
  • SPIE LASE, SPIE Proceedings
  • DOI: 10.1117/12.2085127

Time-dependence of the alpha to epsilon phase transformation in iron
journal, December 2013

  • Smith, R. F.; Eggert, J. H.; Swift, D. C.
  • Journal of Applied Physics, Vol. 114, Issue 22
  • DOI: 10.1063/1.4839655

X-ray diffraction at the National Ignition Facility
journal, April 2020

  • Rygg, J. R.; Smith, R. F.; Lazicki, A. E.
  • Review of Scientific Instruments, Vol. 91, Issue 4
  • DOI: 10.1063/1.5129698

A platform for x-ray absorption fine structure study of dynamically compressed materials above 1 Mbar
journal, December 2013

  • Ping, Y.; Hicks, D. G.; Yaakobi, B.
  • Review of Scientific Instruments, Vol. 84, Issue 12
  • DOI: 10.1063/1.4841935

Front Matter: Volume 8850
conference, October 2013


Measurement of iron characteristics under ramp compression
journal, October 2017


Effect of non-hydrostaticity on the α-ε transition of iron
journal, December 1990


Shock‐Wave Studies of PMMA, Fused Silica, and Sapphire
journal, September 1970

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 41, Issue 10
  • DOI: 10.1063/1.1658439

Establishing gold and platinum standards to 1 terapascal using shockless compression
journal, June 2021


Probing matter at Gbar pressures at the NIF
journal, March 2014


A Characteristics Code for Analysis of Isentropic Compression Experiments
conference, January 2004

  • Maw, J. R.
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2003: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.1780457

Algorithm for precision subsample timing between Gaussian-like pulses
journal, October 2010

  • Lerche, R. A.; Golick, B. P.; Holder, J. P.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3475785

Resolution Limitations And Optimization Of The LLNL Streak Camera Focus
conference, February 1988


Direct measurements of the α-ϵ transition stress and kinetics for shocked iron
journal, May 2009

  • Jensen, B. J.; Gray, G. T.; Hixson, R. S.
  • Journal of Applied Physics, Vol. 105, Issue 10
  • DOI: 10.1063/1.3110188

Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum
journal, November 2014

  • Davis, Jean-Paul; Brown, Justin L.; Knudson, Marcus D.
  • Journal of Applied Physics, Vol. 116, Issue 20, Article No. 204903
  • DOI: 10.1063/1.4902863

Non-iterative characteristics analysis for high-pressure ramp loading
journal, September 2019

  • Swift, Damian C.; Fratanduono, Dayne E.; Kraus, Richard G.
  • Review of Scientific Instruments, Vol. 90, Issue 9
  • DOI: 10.1063/1.5063830

Correction to the velocity‐per‐fringe relationship for the VISAR interferometer
journal, August 1974

  • Barker, L. M.; Schuler, K. W.
  • Journal of Applied Physics, Vol. 45, Issue 8
  • DOI: 10.1063/1.1663841

Model of plastic deformation for extreme loading conditions
journal, January 2003

  • Preston, Dean L.; Tonks, Davis L.; Wallace, Duane C.
  • Journal of Applied Physics, Vol. 93, Issue 1
  • DOI: 10.1063/1.1524706

Refractive index of lithium fluoride to 900 gigapascal and implications for dynamic equation of state measurements
journal, May 2019

  • Kirsch, L. E.; Ali, S. J.; Fratanduono, D. E.
  • Journal of Applied Physics, Vol. 125, Issue 17
  • DOI: 10.1063/1.5091722

Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility
journal, July 2014

  • Rigg, P. A.; Knudson, M. D.; Scharff, R. J.
  • Journal of Applied Physics, Vol. 116, Issue 3
  • DOI: 10.1063/1.4890714

The effect of nearly steady shock waves in ramp compression experiments
journal, June 2015

  • Fratanduono, D. E.; Smith, R. F.; Braun, D. G.
  • Journal of Applied Physics, Vol. 117, Issue 24
  • DOI: 10.1063/1.4922583

Shock-ramp analysis test problem
journal, May 2021

  • Rothman, S. D.; Ali, S. J.; Brown, J. L.
  • Journal of Applied Physics, Vol. 129, Issue 18
  • DOI: 10.1063/5.0045562

Ramp compression of tantalum to 330 GPa
journal, August 2015