DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Climatology and surface impacts of atmospheric rivers on West Antarctica

Abstract

Atmospheric rivers (ARs) transport large amounts of moisture from the mid- to high-latitudes and they are a primary driver of the most extreme snowfall events, along with surface melting, in Antarctica. In this study, we characterize the climatology and surface impacts of ARs on West Antarctica, focusing on the Amundsen Sea Embayment and Marie Byrd Land. First, we develop a climatology of ARs in this region, using an Antarctic-specific AR detection tool combined with the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) atmospheric reanalyses. We find that while ARs are infrequent (occurring 3 % of the time), they cause intense precipitation in short periods of time and account for 11 % of the annual surface accumulation. They are driven by the coupling of a blocking high over the Antarctic Peninsula with a low-pressure system known as the Amundsen Sea Low. Next, we use observations from automatic weather stations on Thwaites Eastern Ice Shelf with the firn model SNOWPACK and interferometric reflectometry (IR) to examine a case study of three ARs that made landfall in rapid succession from 2 to 8 February 2020, known as anmore » AR family event. While accumulation dominates the surface impacts of the event on Thwaites Eastern Ice Shelf (> 100 kg m–2 or millimeters water equivalent), we find small amounts of surface melt as well (< 5 kg m–2). The results presented here enable us to quantify the past impacts of ARs on West Antarctica's surface mass balance (SMB) and characterize their interannual variability and trends, enabling a better assessment of future AR-driven changes in the SMB.« less

Authors:
ORCiD logo; ORCiD logo; ; ; ORCiD logo; ORCiD logo; ; ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
University Corporation for Atmospheric Research (UCAR), Boulder, CO (United States)
Sponsoring Org.:
USDOE; National Aeronautics and Space Administration; National Science Foundation (NSF); Natural Environment Research Council; Agence Nationale de la Recherche
OSTI Identifier:
1958056
Alternate Identifier(s):
OSTI ID: 1959062
Grant/Contract Number:  
DE SC0022070; SC0022070; 80NSSC21K1610; NE/S006419/1; 80NSSC20K1727; 1929991; 1947282; 1738934; ANR-20-CE01-0013
Resource Type:
Published Article
Journal Name:
The Cryosphere (Online)
Additional Journal Information:
Journal Name: The Cryosphere (Online) Journal Volume: 17 Journal Issue: 2; Journal ID: ISSN 1994-0424
Publisher:
Copernicus GmbH
Country of Publication:
Germany
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Maclennan, Michelle L., Lenaerts, Jan T. M., Shields, Christine A., Hoffman, Andrew O., Wever, Nander, Thompson-Munson, Megan, Winters, Andrew C., Pettit, Erin C., Scambos, Theodore A., and Wille, Jonathan D. Climatology and surface impacts of atmospheric rivers on West Antarctica. Germany: N. p., 2023. Web. doi:10.5194/tc-17-865-2023.
Maclennan, Michelle L., Lenaerts, Jan T. M., Shields, Christine A., Hoffman, Andrew O., Wever, Nander, Thompson-Munson, Megan, Winters, Andrew C., Pettit, Erin C., Scambos, Theodore A., & Wille, Jonathan D. Climatology and surface impacts of atmospheric rivers on West Antarctica. Germany. https://doi.org/10.5194/tc-17-865-2023
Maclennan, Michelle L., Lenaerts, Jan T. M., Shields, Christine A., Hoffman, Andrew O., Wever, Nander, Thompson-Munson, Megan, Winters, Andrew C., Pettit, Erin C., Scambos, Theodore A., and Wille, Jonathan D. Tue . "Climatology and surface impacts of atmospheric rivers on West Antarctica". Germany. https://doi.org/10.5194/tc-17-865-2023.
@article{osti_1958056,
title = {Climatology and surface impacts of atmospheric rivers on West Antarctica},
author = {Maclennan, Michelle L. and Lenaerts, Jan T. M. and Shields, Christine A. and Hoffman, Andrew O. and Wever, Nander and Thompson-Munson, Megan and Winters, Andrew C. and Pettit, Erin C. and Scambos, Theodore A. and Wille, Jonathan D.},
abstractNote = {Atmospheric rivers (ARs) transport large amounts of moisture from the mid- to high-latitudes and they are a primary driver of the most extreme snowfall events, along with surface melting, in Antarctica. In this study, we characterize the climatology and surface impacts of ARs on West Antarctica, focusing on the Amundsen Sea Embayment and Marie Byrd Land. First, we develop a climatology of ARs in this region, using an Antarctic-specific AR detection tool combined with the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) atmospheric reanalyses. We find that while ARs are infrequent (occurring 3 % of the time), they cause intense precipitation in short periods of time and account for 11 % of the annual surface accumulation. They are driven by the coupling of a blocking high over the Antarctic Peninsula with a low-pressure system known as the Amundsen Sea Low. Next, we use observations from automatic weather stations on Thwaites Eastern Ice Shelf with the firn model SNOWPACK and interferometric reflectometry (IR) to examine a case study of three ARs that made landfall in rapid succession from 2 to 8 February 2020, known as an AR family event. While accumulation dominates the surface impacts of the event on Thwaites Eastern Ice Shelf (> 100 kg m–2 or millimeters water equivalent), we find small amounts of surface melt as well (< 5 kg m–2). The results presented here enable us to quantify the past impacts of ARs on West Antarctica's surface mass balance (SMB) and characterize their interannual variability and trends, enabling a better assessment of future AR-driven changes in the SMB.},
doi = {10.5194/tc-17-865-2023},
journal = {The Cryosphere (Online)},
number = 2,
volume = 17,
place = {Germany},
year = {Tue Feb 21 00:00:00 EST 2023},
month = {Tue Feb 21 00:00:00 EST 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/tc-17-865-2023

Save / Share:

Works referenced in this record:

MeteoIO 2.4.2: a preprocessing library for meteorological data
journal, December 2014


Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison
journal, January 2017

  • Steger, Christian R.; Reijmer, Carleen H.; van den Broeke, Michiel R.
  • Frontiers in Earth Science, Vol. 5
  • DOI: 10.3389/feart.2017.00003

Relationship Between Weather Regimes and Atmospheric Rivers in East Antarctica
journal, December 2021

  • Pohl, Benjamin; Favier, Vincent; Wille, Jonathan
  • Journal of Geophysical Research: Atmospheres, Vol. 126, Issue 24
  • DOI: 10.1029/2021JD035294

Weakening of the pinning point buttressing Thwaites Glacier, West Antarctica
journal, February 2022

  • Wild, Christian T.; Alley, Karen E.; Muto, Atsuhiro
  • The Cryosphere, Vol. 16, Issue 2
  • DOI: 10.5194/tc-16-397-2022

The ERA5 global reanalysis
journal, June 2020

  • Hersbach, Hans; Bell, Bill; Berrisford, Paul
  • Quarterly Journal of the Royal Meteorological Society, Vol. 146, Issue 730
  • DOI: 10.1002/qj.3803

A zonal wave 3 index for the Southern Hemisphere: ZONAL WAVE 3 INDEX
journal, December 2004


Four decades of Antarctic Ice Sheet mass balance from 1979–2017
journal, January 2019

  • Rignot, Eric; Mouginot, Jérémie; Scheuchl, Bernd
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 4
  • DOI: 10.1073/pnas.1812883116

The role of atmospheric rivers in anomalous snow accumulation in East Antarctica
journal, September 2014

  • Gorodetskaya, Irina V.; Tsukernik, Maria; Claes, Kim
  • Geophysical Research Letters, Vol. 41, Issue 17
  • DOI: 10.1002/2014GL060881

Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation: Storm Characteristics in U.S. West Coast
journal, July 2017

  • Lamjiri, M. A.; Dettinger, M. D.; Ralph, F. M.
  • Geophysical Research Letters, Vol. 44, Issue 13
  • DOI: 10.1002/2017GL074193

Trends and connections across the Antarctic cryosphere
journal, June 2018

  • Shepherd, Andrew; Fricker, Helen Amanda; Farrell, Sinead Louise
  • Nature, Vol. 558, Issue 7709
  • DOI: 10.1038/s41586-018-0171-6

Rapid glacier retreat rates observed in West Antarctica
journal, January 2022


Meteorological Drivers and Large-Scale Climate Forcing of West Antarctic Surface Melt
journal, February 2019

  • Scott, Ryan C.; Nicolas, Julien P.; Bromwich, David H.
  • Journal of Climate, Vol. 32, Issue 3
  • DOI: 10.1175/JCLI-D-18-0233.1

A probabilistic framework for quantifying the role of anthropogenic climate change in marine-terminating glacier retreats
journal, July 2022

  • Christian, John Erich; Robel, Alexander A.; Catania, Ginny
  • The Cryosphere, Vol. 16, Issue 7
  • DOI: 10.5194/tc-16-2725-2022

Stability of the Junction of an Ice Sheet and an Ice Shelf
journal, January 1974


Present and Future of Rainfall in Antarctica
journal, April 2021

  • Vignon, É.; Roussel, M. ‐L.; Gorodetskaya, I. V.
  • Geophysical Research Letters, Vol. 48, Issue 8
  • DOI: 10.1029/2020GL092281

A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers
journal, March 1998


How Do Atmospheric Rivers Form?
journal, August 2015

  • Dacre, H. F.; Clark, P. A.; Martinez-Alvarado, O.
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 8
  • DOI: 10.1175/BAMS-D-14-00031.1

Contribution of Antarctica to past and future sea-level rise
journal, March 2016


Climatology of Winter Orographic Precipitation over the Subtropical Central Andes and Associated Synoptic and Regional Characteristics
journal, August 2011

  • Viale, Maximiliano; Nuñez, Mario N.
  • Journal of Hydrometeorology, Vol. 12, Issue 4
  • DOI: 10.1175/2010JHM1284.1

A physical SNOWPACK model for the Swiss avalanche warning
journal, November 2002


Marine ice sheet stability
journal, March 2012


Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica
journal, January 2008

  • Thoma, Malte; Jenkins, Adrian; Holland, David
  • Geophysical Research Letters, Vol. 35, Issue 18
  • DOI: 10.1029/2008GL034939

West Antarctic Surface Climate Changes Since the Mid‐20th Century Driven by Anthropogenic Forcing
journal, August 2022

  • Dalaiden, Quentin; Schurer, Andrew P.; Kirchmeier‐Young, Megan C.
  • Geophysical Research Letters, Vol. 49, Issue 16
  • DOI: 10.1029/2022GL099543

Strong Summer Atmospheric Rivers Trigger Greenland Ice Sheet Melt through Spatially Varying Surface Energy Balance and Cloud Regimes
journal, August 2020

  • Mattingly, Kyle S.; Mote, Thomas L.; Fettweis, Xavier
  • Journal of Climate, Vol. 33, Issue 16
  • DOI: 10.1175/JCLI-D-19-0835.1

Software tools for GNSS interferometric reflectometry (GNSS-IR)
journal, June 2018


The surface temperature inversion over the Antarctic Continent
journal, July 1970


Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica
journal, January 2020

  • Donat-Magnin, Marion; Jourdain, Nicolas C.; Gallée, Hubert
  • The Cryosphere, Vol. 14, Issue 1
  • DOI: 10.5194/tc-14-229-2020

The nexus between atmospheric rivers and extreme precipitation across Europe: ARS AND EXTREME EUROPEAN PRECIPITATION
journal, June 2013

  • Lavers, David A.; Villarini, Gabriele
  • Geophysical Research Letters, Vol. 40, Issue 12
  • DOI: 10.1002/grl.50636

The Amundsen Sea Low: Variability, Change, and Impact on Antarctic Climate
journal, January 2016

  • Raphael, M. N.; Marshall, G. J.; Turner, J.
  • Bulletin of the American Meteorological Society, Vol. 97, Issue 1
  • DOI: 10.1175/BAMS-D-14-00018.1

West Antarctic surface melt triggered by atmospheric rivers
journal, October 2019


Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf
journal, June 2011

  • Jacobs, Stanley S.; Jenkins, Adrian; Giulivi, Claudia F.
  • Nature Geoscience, Vol. 4, Issue 8
  • DOI: 10.1038/ngeo1188

Flooding on California's Russian River: Role of atmospheric rivers
journal, January 2006

  • Ralph, F. Martin; Neiman, Paul J.; Wick, Gary A.
  • Geophysical Research Letters, Vol. 33, Issue 13
  • DOI: 10.1029/2006GL026689

Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability
journal, January 2014


Daily Precipitation Extreme Events in the Iberian Peninsula and Its Association with Atmospheric Rivers
journal, April 2015

  • Ramos, Alexandre M.; Trigo, Ricardo M.; Liberato, Margarida L. R.
  • Journal of Hydrometeorology, Vol. 16, Issue 2
  • DOI: 10.1175/JHM-D-14-0103.1

Impacts of warm water on Antarctic ice shelf stability through basal channel formation
journal, March 2016

  • Alley, Karen E.; Scambos, Ted A.; Siegfried, Matthew R.
  • Nature Geoscience, Vol. 9, Issue 4
  • DOI: 10.1038/ngeo2675

Evaluation of Ultrasonic Snow Depth Sensors for U.S. Snow Measurements
journal, May 2008

  • Ryan, Wendy A.; Doesken, Nolan J.; Fassnacht, Steven R.
  • Journal of Atmospheric and Oceanic Technology, Vol. 25, Issue 5
  • DOI: 10.1175/2007JTECHA947.1

Verification of the multi-layer SNOWPACK model with different water transport schemes
journal, January 2015


Future changes in atmospheric rivers and extreme precipitation in Norway
journal, January 2020


The Role of Atmospheric Rivers in Extratropical and Polar Hydroclimate
journal, July 2018

  • Nash, Deanna; Waliser, Duane; Guan, Bin
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 13
  • DOI: 10.1029/2017JD028130

The semi-annual oscillation and Antarctic climate. Part 1: influence on near surface temperatures (1957–79)
journal, June 1998


Event-driven deposition of snow on the Antarctic Plateau: analyzing field measurements with SNOWPACK
journal, January 2013

  • Groot Zwaaftink, C. D.; Cagnati, A.; Crepaz, A.
  • The Cryosphere, Vol. 7, Issue 1
  • DOI: 10.5194/tc-7-333-2013

Large‐Scale Atmospheric Drivers of Snowfall Over Thwaites Glacier, Antarctica
journal, September 2021

  • Maclennan, Michelle L.; Lenaerts, Jan T. M.
  • Geophysical Research Letters, Vol. 48, Issue 17
  • DOI: 10.1029/2021GL093644

Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density
journal, March 2021


Antarctic Ice Sheet melting in the southeast Pacific
journal, May 1996

  • Jacobs, Stanley S.; Hellmer, Hartmut H.; Jenkins, Adrian
  • Geophysical Research Letters, Vol. 23, Issue 9
  • DOI: 10.1029/96GL00723

Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling
journal, November 2017

  • Lenaerts, Jan T. M.; Ligtenberg, Stefan R. M.; Medley, Brooke
  • Annals of Glaciology, Vol. 59, Issue 76pt1
  • DOI: 10.1017/aog.2017.42

The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology
journal, December 2019

  • Rutz, Jonathan J.; Shields, Christine A.; Lora, Juan M.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 24
  • DOI: 10.1029/2019JD030936

An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016
journal, February 2021

  • van Wessem, J. Melchior; Steger, Christian R.; Wever, Nander
  • The Cryosphere, Vol. 15, Issue 2
  • DOI: 10.5194/tc-15-695-2021

Observations and simulations of new snow density in the drifting snow-dominated environment of Antarctica
journal, December 2022


Evaluating Uncertainty and Modes of Variability for Antarctic Atmospheric Rivers
journal, August 2022

  • Shields, Christine A.; Wille, Jonathan D.; Marquardt Collow, Allison B.
  • Geophysical Research Letters, Vol. 49, Issue 16
  • DOI: 10.1029/2022GL099577

Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise
journal, December 2018


Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011
journal, May 2014

  • Rignot, E.; Mouginot, J.; Morlighem, M.
  • Geophysical Research Letters, Vol. 41, Issue 10
  • DOI: 10.1002/2014GL060140

The Paris Climate Agreement and future sea-level rise from Antarctica
journal, May 2021


Two decades of dynamic change and progressive destabilization on the Thwaites Eastern Ice Shelf
journal, November 2021

  • Alley, Karen E.; Wild, Christian T.; Luckman, Adrian
  • The Cryosphere, Vol. 15, Issue 11
  • DOI: 10.5194/tc-15-5187-2021

Antarctic Atmospheric River Climatology and Precipitation Impacts
journal, April 2021

  • Wille, Jonathan D.; Favier, Vincent; Gorodetskaya, Irina V.
  • Journal of Geophysical Research: Atmospheres, Vol. 126, Issue 8
  • DOI: 10.1029/2020JD033788

Interpretation of Enhanced Integrated Water Vapor Bands Associated with Extratropical Cyclones: Their Formation and Connection to Tropical Moisture
journal, April 2006

  • Bao, J-W.; Michelson, S. A.; Neiman, P. J.
  • Monthly Weather Review, Vol. 134, Issue 4
  • DOI: 10.1175/MWR3123.1

Continental heat anomalies and the extreme melting of the Greenland ice surface in 2012 and 1889: Melting of Greenland in 1889 and 2012
journal, June 2014

  • Neff, William; Compo, Gilbert P.; Martin Ralph, F.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 11
  • DOI: 10.1002/2014JD021470

Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation: ICE-OCEAN MODELING OF THWAITES GLACIER
journal, June 2017

  • Seroussi, H.; Nakayama, Y.; Larour, E.
  • Geophysical Research Letters, Vol. 44, Issue 12
  • DOI: 10.1002/2017GL072910

Can we measure snow depth with GPS receivers?
journal, September 2009

  • Larson, Kristine M.; Gutmann, Ethan D.; Zavorotny, Valery U.
  • Geophysical Research Letters, Vol. 36, Issue 17
  • DOI: 10.1029/2009GL039430

A camera and multisensor automated station design for polar physical and biological systems monitoring: AMIGOS
journal, January 2013

  • Scambos, T. A.; Ross, R.; Haran, T.
  • Journal of Glaciology, Vol. 59, Issue 214
  • DOI: 10.3189/2013JoG12J170

Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design
journal, January 2018

  • Shields, Christine A.; Rutz, Jonathan J.; Leung, Lai-Yung
  • Geoscientific Model Development, Vol. 11, Issue 6
  • DOI: 10.5194/gmd-11-2455-2018

snowpack model calculations for avalanche warning based upon a new network of weather and snow stations
journal, December 1999


The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)
journal, July 2017


Constraints on snow accumulation and firn density in Greenland using GPS receivers
journal, January 2015

  • Larson, Kristine M.; Wahr, John; Munneke, Peter Kuipers
  • Journal of Glaciology, Vol. 61, Issue 225
  • DOI: 10.3189/2015JoG14J130

Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica
journal, May 2014


Linking Sub‐Tropical Evaporation and Extreme Precipitation Over East Antarctica: An Atmospheric River Case Study
journal, May 2021

  • Terpstra, Annick; Gorodetskaya, Irina V.; Sodemann, Harald
  • Journal of Geophysical Research: Atmospheres, Vol. 126, Issue 9
  • DOI: 10.1029/2020JD033617

Extreme winds and precipitation during landfall of atmospheric rivers
journal, February 2017

  • Waliser, Duane; Guan, Bin
  • Nature Geoscience, Vol. 10, Issue 3
  • DOI: 10.1038/ngeo2894

Large-Scale Environments of Successive Atmospheric River Events Leading to Compound Precipitation Extremes in California
journal, March 2022

  • Fish, Meredith A.; Done, James M.; Swain, Daniel L.
  • Journal of Climate, Vol. 35, Issue 5
  • DOI: 10.1175/JCLI-D-21-0168.1

Orographic Flow Influence on Precipitation During an Atmospheric River Event at Davis, Antarctica
journal, January 2022

  • Gehring, Josué; Vignon, Étienne; Billault‐Roux, Anne‐Claire
  • Journal of Geophysical Research: Atmospheres, Vol. 127, Issue 2
  • DOI: 10.1029/2021JD035210

A physical SNOWPACK model for the Swiss avalanche warning
journal, November 2002