DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energetics of surface melt in West Antarctica

Abstract

We use reanalysis data and satellite remote sensing of cloud properties to examine how meteorological conditions alter the surface energy balance to cause surface melt that is detectable in satellite passive microwave imagery over West Antarctica. This analysis can detect each of the three primary mechanisms for inducing surface melt at a specific location: thermal blanketing involving sensible heat flux and/or longwave heating by optically thick cloud cover, all-wave radiative enhancement by optically thin cloud cover, and föhn winds. We examine case studies over Pine Island and Thwaites glaciers, which are of interest for ice shelf and ice sheet stability, and over Siple Dome, which is more readily accessible for field work. During January 2015 over Siple Dome we identified a melt event whose origin is an all-wave radiative enhancement by optically thin clouds. During December 2011 over Pine Island and Thwaites glaciers, we identified a melt event caused mainly by thermal blanketing from optically thick clouds. Over Siple Dome, those same 2011 synoptic conditions yielded a thermal-blanketing-driven melt event that was initiated by an impulse of sensible heat flux and then prolonged by cloud longwave heating. The December 2011 synoptic conditions also generated föhn winds at a location onmore » the Ross Ice Shelf adjacent to the Transantarctic Mountains, and we analyze this case with additional support from automatic weather station data. In contrast, a late-summer thermal blanketing period over Pine Island and Thwaites glaciers during February 2013 showed surface melt initiated by cloud longwave heating and then prolonged by enhanced sensible heat flux. One limitation thus far with this type of analysis involves uncertainties in the cloud optical properties. Nevertheless, with improvements this type of analysis can enable quantitative prediction of atmospheric stress on the vulnerable Antarctic ice shelves in a steadily warming climate.« less

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [5];  [6]
  1. Univ. of California San Diego, La Jolla, CA (United States)
  2. Science Systems and Applications, Inc., Hampton, VA (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
  4. Univ. of Colorado, Boulder, CO (United States)
  5. Univ. of Wisconsin, Madison, WI (United States)
  6. Univ. of California San Diego, La Jolla, CA (United States); Madison Area Technical College, Madison, WI (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Aeronautics and Space Administration (NASA); National Science Foundation (NSF)
OSTI Identifier:
1787818
Report Number(s):
BNL-221601-2021-JAAM
Journal ID: ISSN 1994-0424
Grant/Contract Number:  
SC0012704; SC0017981; 80NSSC18K1025; OPP-1924730
Resource Type:
Accepted Manuscript
Journal Name:
The Cryosphere (Online)
Additional Journal Information:
Journal Name: The Cryosphere (Online); Journal Volume: 15; Journal Issue: 7; Journal ID: ISSN 1994-0424
Publisher:
Copernicus Publications, EGU
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Ghiz, Madison L., Scott, Ryan C., Vogelmann, Andrew M., Lenaerts, Jan T. M., Lazzara, Matthew, and Lubin, Dan. Energetics of surface melt in West Antarctica. United States: N. p., 2021. Web. doi:10.5194/tc-15-3459-2021.
Ghiz, Madison L., Scott, Ryan C., Vogelmann, Andrew M., Lenaerts, Jan T. M., Lazzara, Matthew, & Lubin, Dan. Energetics of surface melt in West Antarctica. United States. https://doi.org/10.5194/tc-15-3459-2021
Ghiz, Madison L., Scott, Ryan C., Vogelmann, Andrew M., Lenaerts, Jan T. M., Lazzara, Matthew, and Lubin, Dan. Mon . "Energetics of surface melt in West Antarctica". United States. https://doi.org/10.5194/tc-15-3459-2021. https://www.osti.gov/servlets/purl/1787818.
@article{osti_1787818,
title = {Energetics of surface melt in West Antarctica},
author = {Ghiz, Madison L. and Scott, Ryan C. and Vogelmann, Andrew M. and Lenaerts, Jan T. M. and Lazzara, Matthew and Lubin, Dan},
abstractNote = {We use reanalysis data and satellite remote sensing of cloud properties to examine how meteorological conditions alter the surface energy balance to cause surface melt that is detectable in satellite passive microwave imagery over West Antarctica. This analysis can detect each of the three primary mechanisms for inducing surface melt at a specific location: thermal blanketing involving sensible heat flux and/or longwave heating by optically thick cloud cover, all-wave radiative enhancement by optically thin cloud cover, and föhn winds. We examine case studies over Pine Island and Thwaites glaciers, which are of interest for ice shelf and ice sheet stability, and over Siple Dome, which is more readily accessible for field work. During January 2015 over Siple Dome we identified a melt event whose origin is an all-wave radiative enhancement by optically thin clouds. During December 2011 over Pine Island and Thwaites glaciers, we identified a melt event caused mainly by thermal blanketing from optically thick clouds. Over Siple Dome, those same 2011 synoptic conditions yielded a thermal-blanketing-driven melt event that was initiated by an impulse of sensible heat flux and then prolonged by cloud longwave heating. The December 2011 synoptic conditions also generated föhn winds at a location on the Ross Ice Shelf adjacent to the Transantarctic Mountains, and we analyze this case with additional support from automatic weather station data. In contrast, a late-summer thermal blanketing period over Pine Island and Thwaites glaciers during February 2013 showed surface melt initiated by cloud longwave heating and then prolonged by enhanced sensible heat flux. One limitation thus far with this type of analysis involves uncertainties in the cloud optical properties. Nevertheless, with improvements this type of analysis can enable quantitative prediction of atmospheric stress on the vulnerable Antarctic ice shelves in a steadily warming climate.},
doi = {10.5194/tc-15-3459-2021},
journal = {The Cryosphere (Online)},
number = 7,
volume = 15,
place = {United States},
year = {Mon Jul 26 00:00:00 EDT 2021},
month = {Mon Jul 26 00:00:00 EDT 2021}
}

Works referenced in this record:

Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves
journal, August 2020

  • Adusumilli, Susheel; Fricker, Helen Amanda; Medley, Brooke
  • Nature Geoscience, Vol. 13, Issue 9
  • DOI: 10.1038/s41561-020-0616-z

Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More
journal, May 2015


Antarctic ice shelf potentially stabilized by export of meltwater in surface river
journal, April 2017

  • Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan
  • Nature, Vol. 544, Issue 7650
  • DOI: 10.1038/nature22048

Antarctic surface hydrology and impacts on ice-sheet mass balance
journal, November 2018


July 2012 Greenland melt extent enhanced by low-level liquid clouds
journal, April 2013

  • Bennartz, R.; Shupe, M. D.; Turner, D. D.
  • Nature, Vol. 496, Issue 7443
  • DOI: 10.1038/nature12002

Tropospheric clouds in Antarctica
journal, January 2012

  • Bromwich, David H.; Nicolas, Julien P.; Hines, Keith M.
  • Reviews of Geophysics, Vol. 50, Issue 1
  • DOI: 10.1029/2011RG000363

Central West Antarctica among the most rapidly warming regions on Earth
journal, December 2012

  • Bromwich, David H.; Nicolas, Julien P.; Monaghan, Andrew J.
  • Nature Geoscience, Vol. 6, Issue 2
  • DOI: 10.1038/ngeo1671

Comparison of near-infrared and thermal infrared cloud phase detections
journal, January 2006

  • Chylek, Petr; Robinson, S.; Dubey, M. K.
  • Journal of Geophysical Research, Vol. 111, Issue D20
  • DOI: 10.1029/2006JD007140

Large-Scale Forcing of the Amundsen Sea Low and Its Influence on Sea Ice and West Antarctic Temperature
journal, September 2017


Characterization and formation of melt layers in polar snow: observations and experiments from West Antarctica
journal, January 2005


Rise in frequency of surface melting at Siple Dome through the Holocene: Evidence for increasing marine influence on the climate of West Antarctica
journal, January 2008

  • Das, Sarah B.; Alley, Richard B.
  • Journal of Geophysical Research, Vol. 113, Issue D2
  • DOI: 10.1029/2007JD008790

The Effect of Foehn‐Induced Surface Melt on Firn Evolution Over the Northeast Antarctic Peninsula
journal, April 2019

  • Datta, Rajashree Tri; Tedesco, Marco; Fettweis, Xavier
  • Geophysical Research Letters, Vol. 46, Issue 7
  • DOI: 10.1029/2018GL080845

Contribution of Antarctica to past and future sea-level rise
journal, March 2016


The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica
journal, January 2020

  • Donat-Magnin, Marion; Jourdain, Nicolas C.; Gallée, Hubert
  • The Cryosphere, Vol. 14, Issue 1
  • DOI: 10.5194/tc-14-229-2020

Objective Forecasting of Foehn Winds for a Subgrid-Scale Alpine Valley
journal, April 2008


An Improved Snow Scheme for the ECMWF Land Surface Model: Description and Offline Validation
journal, August 2010

  • Dutra, Emanuel; Balsamo, Gianpaolo; Viterbo, Pedro
  • Journal of Hydrometeorology, Vol. 11, Issue 4
  • DOI: 10.1175/2010JHM1249.1

Foehn jets over the Larsen C Ice Shelf, Antarctica
journal, June 2014

  • Elvidge, Andrew D.; Renfrew, Ian A.; King, John C.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 141, Issue 688
  • DOI: 10.1002/qj.2382

Atmospheric Drivers of Melt on Larsen C Ice Shelf: Surface Energy Budget Regimes and the Impact of Foehn
journal, August 2020

  • Elvidge, Andrew D.; Kuipers Munneke, Peter; King, John C.
  • Journal of Geophysical Research: Atmospheres, Vol. 125, Issue 17
  • DOI: 10.1029/2020JD032463

High geothermal heat flux measured below the West Antarctic Ice Sheet
journal, July 2015

  • Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.
  • Science Advances, Vol. 1, Issue 6
  • DOI: 10.1126/sciadv.1500093

The safety band of Antarctic ice shelves
journal, February 2016

  • Fürst, Johannes Jakob; Durand, Gaël; Gillet-Chaulet, Fabien
  • Nature Climate Change, Vol. 6, Issue 5
  • DOI: 10.1038/nclimate2912

Summertime cloud phase strongly influences surface melting on the Larsen C ice shelf, Antarctica
journal, February 2020

  • Gilbert, E.; Orr, A.; King, J. C.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 146, Issue 729
  • DOI: 10.1002/qj.3753

A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse
journal, January 2008


The ERA5 global reanalysis
journal, June 2020

  • Hersbach, Hans; Bell, Bill; Berrisford, Paul
  • Quarterly Journal of the Royal Meteorological Society, Vol. 146, Issue 730
  • DOI: 10.1002/qj.3803

Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS)
journal, January 2019

  • Hines, Keith M.; Bromwich, David H.; Wang, Sheng-Hung
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 19
  • DOI: 10.5194/acp-19-12431-2019

Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica
journal, May 2014


The Impact of Föhn Winds on Surface Energy Balance During the 2010-2011 Melt Season Over Larsen C Ice Shelf, Antarctica: Föhn Winds and Larsen C Ice Shelf
journal, November 2017

  • King, J. C.; Kirchgaessner, A.; Bevan, S.
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 22
  • DOI: 10.1002/2017JD026809

Widespread movement of meltwater onto and across Antarctic ice shelves
journal, April 2017

  • Kingslake, Jonathan; Ely, Jeremy C.; Das, Indrani
  • Nature, Vol. 544, Issue 7650
  • DOI: 10.1038/nature22049

Insignificant change in Antarctic snowmelt volume since 1979: ANTARCTIC SNOWMELT VOLUME
journal, January 2012

  • Kuipers Munneke, P.; Picard, G.; van den Broeke, M. R.
  • Geophysical Research Letters, Vol. 39, Issue 1
  • DOI: 10.1029/2011GL050207

Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula
journal, January 2012

  • Kuipers Munneke, P.; van den Broeke, M. R.; King, J. C.
  • The Cryosphere, Vol. 6, Issue 2
  • DOI: 10.5194/tc-6-353-2012

Intense Winter Surface Melt on an Antarctic Ice Shelf
journal, May 2018

  • Kuipers Munneke, P.; Luckman, A. J.; Bevan, S. L.
  • Geophysical Research Letters, Vol. 45, Issue 15
  • DOI: 10.1029/2018GL077899

Antarctic Automatic Weather Station Program: 30 Years of Polar Observation
journal, October 2012

  • Lazzara, Matthew A.; Weidner, George A.; Keller, Linda M.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 10
  • DOI: 10.1175/BAMS-D-11-00015.1

Polar clouds and radiation in satellite observations, reanalyses, and climate models: POLAR CLOUDS AND RADIATION
journal, April 2017

  • Lenaerts, Jan T. M.; Van Tricht, Kristof; Lhermitte, Stef
  • Geophysical Research Letters, Vol. 44, Issue 7
  • DOI: 10.1002/2016GL072242

Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling
journal, November 2017

  • Lenaerts, Jan T. M.; Ligtenberg, Stefan R. M.; Medley, Brooke
  • Annals of Glaciology, Vol. 59, Issue 76pt1
  • DOI: 10.1017/aog.2017.42

Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment
journal, September 2020

  • Lhermitte, Stef; Sun, Sainan; Shuman, Christopher
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 40
  • DOI: 10.1073/pnas.1912890117

AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment
journal, February 2020

  • Lubin, Dan; Zhang, Damao; Silber, Israel
  • Bulletin of the American Meteorological Society, Vol. preprint, Issue 2020
  • DOI: 10.1175/BAMS-D-18-0278.1

The Arm Climate Research Facility: A Review of Structure and Capabilities
journal, March 2013

  • Mather, James H.; Voyles, Jimmy W.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 3
  • DOI: 10.1175/BAMS-D-11-00218.1

Applications of the interaction of microwaves with the natural snow cover
journal, January 1987


Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018
journal, April 2019

  • Mouginot, Jérémie; Rignot, Eric; Bjørk, Anders A.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 19
  • DOI: 10.1073/pnas.1904242116

Climate of West Antarctica and Influence of Marine Air Intrusions
journal, January 2011


January 2016 extensive summer melt in West Antarctica favoured by strong El Niño
journal, June 2017

  • Nicolas, Julien P.; Vogelmann, Andrew M.; Scott, Ryan C.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15799

Global warming and the stability of the West Antarctic Ice Sheet
journal, May 1998

  • Oppenheimer, Michael
  • Nature, Vol. 393, Issue 6683
  • DOI: 10.1038/30661

Volume loss from Antarctic ice shelves is accelerating
journal, March 2015


An initial analysis of the pixel-level uncertainties in global MODIS cloud optical thickness and effective particle size retrievals
conference, December 2004

  • Platnick, Steven; Pincus, Robert; Wind, Brad
  • Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space, SPIE Proceedings
  • DOI: 10.1117/12.578353

The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua
journal, January 2017

  • Platnick, Steven; Meyer, Kerry G.; King, Michael D.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, Issue 1
  • DOI: 10.1109/TGRS.2016.2610522

Antarctic ice-sheet loss driven by basal melting of ice shelves
journal, April 2012

  • Pritchard, H. D.; Ligtenberg, S. R. M.; Fricker, H. A.
  • Nature, Vol. 484, Issue 7395
  • DOI: 10.1038/nature10968

Four decades of Antarctic Ice Sheet mass balance from 1979–2017
journal, January 2019

  • Rignot, Eric; Mouginot, Jérémie; Scheuchl, Bernd
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 4
  • DOI: 10.1073/pnas.1812883116

CERES Synoptic Product: Methodology and Validation of Surface Radiant Flux
journal, June 2015

  • Rutan, David A.; Kato, Seiji; Doelling, David R.
  • Journal of Atmospheric and Oceanic Technology, Vol. 32, Issue 6
  • DOI: 10.1175/JTECH-D-14-00165.1

Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica
journal, January 2004


MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size
journal, November 2007

  • Scambos, T. A.; Haran, T. M.; Fahnestock, M. A.
  • Remote Sensing of Environment, Vol. 111, Issue 2-3
  • DOI: 10.1016/j.rse.2006.12.020

Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups
journal, April 2009

  • Scambos, Ted; Fricker, Helen Amanda; Liu, Cheng-Chien
  • Earth and Planetary Science Letters, Vol. 280, Issue 1-4
  • DOI: 10.1016/j.epsl.2008.12.027

Mixed-phase cloud radiative properties over Ross Island, Antarctica: The influence of various synoptic-scale atmospheric circulation regimes
journal, June 2014

  • Scott, Ryan C.; Lubin, Dan
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 11
  • DOI: 10.1002/2013JD021132

Unique manifestations of mixed‐phase cloud microphysics over Ross Island and the Ross Ice Shelf, Antarctica
journal, March 2016

  • Scott, Ryan C.; Lubin, Dan
  • Geophysical Research Letters, Vol. 43, Issue 6
  • DOI: 10.1002/2015GL067246

West Antarctic Ice Sheet Cloud Cover and Surface Radiation Budget from NASA A-Train Satellites
journal, August 2017


Meteorological Drivers and Large-Scale Climate Forcing of West Antarctic Surface Melt
journal, February 2019

  • Scott, Ryan C.; Nicolas, Julien P.; Bromwich, David H.
  • Journal of Climate, Vol. 32, Issue 3
  • DOI: 10.1175/JCLI-D-18-0233.1

Cloud Influence on ERA5 and AMPS Surface Downwelling Longwave Radiation Biases in West Antarctica
journal, November 2019

  • Silber, Israel; Verlinde, Johannes; Wang, Sheng-Hung
  • Journal of Climate, Vol. 32, Issue 22
  • DOI: 10.1175/JCLI-D-19-0149.1

Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year
journal, January 2009

  • Steig, Eric J.; Schneider, David P.; Rutherford, Scott D.
  • Nature, Vol. 457, Issue 7228
  • DOI: 10.1038/nature07669

The spatial and seasonal distributions of air-transport origins to the Antarctic based on 5-day backward trajectory analysis
journal, September 2013


Ice supersaturation in the ECMWF integrated forecast system
journal, January 2007

  • Tompkins, A. M.; Gierens, K.; Rädel, G.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 133, Issue 622
  • DOI: 10.1002/qj.14

Variability and Trends of the Summer Melt Period of Antarctic Ice Margins since 1980 from Microwave Sensors
journal, April 2003


Satellite-based estimates of Antarctic surface meltwater fluxes: SATELLITE-BASED ANTARCTIC MELT FLUXES
journal, December 2013

  • Trusel, Luke D.; Frey, Karen E.; Das, Sarah B.
  • Geophysical Research Letters, Vol. 40, Issue 23
  • DOI: 10.1002/2013GL058138

The Amundsen Sea low: The Amundsen Sea low
journal, August 2012

  • Turner, John; Phillips, Tony; Hosking, J. Scott
  • International Journal of Climatology, Vol. 33, Issue 7
  • DOI: 10.1002/joc.3558

The Summer Surface Energy Balance of the High Antarctic Plateau
journal, May 2005

  • As, Dirk van; Broeke, Michiel van den; Reijmer, Carleen
  • Boundary-Layer Meteorology, Vol. 115, Issue 2
  • DOI: 10.1007/s10546-004-4631-1

Strong surface melting preceded collapse of Antarctic Peninsula ice shelf: MELTING ON ANTARCTIC ICE SHELVES
journal, June 2005


Clouds enhance Greenland ice sheet meltwater runoff
journal, January 2016

  • Van Tricht, K.; Lhermitte, S.; Lenaerts, J. T. M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10266

Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica
journal, January 2014

  • van Wessem, J. M.; Reijmer, C. H.; Lenaerts, J. T. M.
  • The Cryosphere, Vol. 8, Issue 1
  • DOI: 10.5194/tc-8-125-2014

Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016)
journal, January 2018

  • van Wessem, Jan Melchior; van de Berg, Willem Jan; Noël, Brice P. Y.
  • The Cryosphere, Vol. 12, Issue 4
  • DOI: 10.5194/tc-12-1479-2018

Stability of the Junction of an Ice Sheet and an Ice Shelf
journal, January 1974


West Antarctic surface melt triggered by atmospheric rivers
journal, October 2019


West Antarctic surface melt event of January 2016 facilitated by föhn warming
journal, January 2019

  • Zou, Xun; Bromwich, David H.; Nicolas, Julien P.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 145, Issue 719
  • DOI: 10.1002/qj.3460

Extent and duration of Antarctic surface melting
journal, January 1994