DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Insights into the Hydrogen Evolution Reaction on 2D Transition-Metal Dichalcogenides

Abstract

Understanding hydrogen evolution reaction (HER) behaviors over two-dimensional transition-metal dichalcogenides (2D-TMDs) is critical for the development of nonprecious HER electrocatalysts with better activity. Here, in this work, by combining density functional theory calculations with microkinetic modeling, we thoroughly investigated the HER mechanism on 2D-TMDs. We find an important dependence of simulated cell size on the calculated hydrogen adsorption energy and the activation barrier for MoS2. Distinct from previous “H migration” mechanisms proposed for the Heyrovsky reaction, the rate-determining step for MoS2, we propose that the Mo site only serves as the stabilized transition state rather than H adsorption. In comparison to transition-metal electrocatalysts, we find that the activation barrier of the Heyrovsky reaction on 2D-TMDs scales with the hydrogen adsorption energy exactly as for transition metals except that all activation energies are displaced upward by ca. 0.4 eV. This higher Heyrovsky activation barrier is responsible for the substantially lower activity of 2D-TMDs. We further show that this higher activation barrier stems from the more positively charged adsorbed hydrogen on the chalcogenides interacting repulsively with the incoming proton. Based on these insights, we discuss potential strategies for the design of nonprecious HER catalysts with activity comparable to Pt.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [1];  [1]
  1. Technical Univ. of Denmark, Lyngby (Denmark)
  2. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States). SUNCAT Center for Interface Science and Catalysis
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Toyota Research Institute
OSTI Identifier:
1888249
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 126; Journal Issue: 11; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; activation energy; adsorption; catalysts; evolution reactions; hydrogen

Citation Formats

Wang, Zhenbin, Tang, Michael T., Cao, Ang, Chan, Karen, and Nørskov, Jens K. Insights into the Hydrogen Evolution Reaction on 2D Transition-Metal Dichalcogenides. United States: N. p., 2022. Web. doi:10.1021/acs.jpcc.1c10436.
Wang, Zhenbin, Tang, Michael T., Cao, Ang, Chan, Karen, & Nørskov, Jens K. Insights into the Hydrogen Evolution Reaction on 2D Transition-Metal Dichalcogenides. United States. https://doi.org/10.1021/acs.jpcc.1c10436
Wang, Zhenbin, Tang, Michael T., Cao, Ang, Chan, Karen, and Nørskov, Jens K. Fri . "Insights into the Hydrogen Evolution Reaction on 2D Transition-Metal Dichalcogenides". United States. https://doi.org/10.1021/acs.jpcc.1c10436. https://www.osti.gov/servlets/purl/1888249.
@article{osti_1888249,
title = {Insights into the Hydrogen Evolution Reaction on 2D Transition-Metal Dichalcogenides},
author = {Wang, Zhenbin and Tang, Michael T. and Cao, Ang and Chan, Karen and Nørskov, Jens K.},
abstractNote = {Understanding hydrogen evolution reaction (HER) behaviors over two-dimensional transition-metal dichalcogenides (2D-TMDs) is critical for the development of nonprecious HER electrocatalysts with better activity. Here, in this work, by combining density functional theory calculations with microkinetic modeling, we thoroughly investigated the HER mechanism on 2D-TMDs. We find an important dependence of simulated cell size on the calculated hydrogen adsorption energy and the activation barrier for MoS2. Distinct from previous “H migration” mechanisms proposed for the Heyrovsky reaction, the rate-determining step for MoS2, we propose that the Mo site only serves as the stabilized transition state rather than H adsorption. In comparison to transition-metal electrocatalysts, we find that the activation barrier of the Heyrovsky reaction on 2D-TMDs scales with the hydrogen adsorption energy exactly as for transition metals except that all activation energies are displaced upward by ca. 0.4 eV. This higher Heyrovsky activation barrier is responsible for the substantially lower activity of 2D-TMDs. We further show that this higher activation barrier stems from the more positively charged adsorbed hydrogen on the chalcogenides interacting repulsively with the incoming proton. Based on these insights, we discuss potential strategies for the design of nonprecious HER catalysts with activity comparable to Pt.},
doi = {10.1021/acs.jpcc.1c10436},
journal = {Journal of Physical Chemistry. C},
number = 11,
volume = 126,
place = {United States},
year = {Fri Mar 11 00:00:00 EST 2022},
month = {Fri Mar 11 00:00:00 EST 2022}
}

Works referenced in this record:

Global Optimization of Adsorbate–Surface Structures While Preserving Molecular Identity
journal, October 2013


Comprehensive Phase Diagrams of MoS 2 Edge Sites Using Dispersion-Corrected DFT Free Energy Calculations
journal, June 2018

  • Rosen, Andrew S.; Notestein, Justin M.; Snurr, Randall Q.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 27
  • DOI: 10.1021/acs.jpcc.8b02524

Does a Thermoneutral Electrocatalyst Correspond to the Apex of a Volcano Plot for a Simple Two‐Electron Process?
journal, May 2020


Analysis of electrocatalytic reaction schemes: distinction between rate-determining and potential-determining steps
journal, October 2012


Projector augmented-wave method
journal, December 1994


The absolute electrode potential: an explanatory note (Recommendations 1986)
journal, January 1986


Challenges in the first-principles description of reactions in electrocatalysis
journal, May 2011


Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction
journal, May 2014

  • Wan, Cheng; Regmi, Yagya N.; Leonard, Brian M.
  • Angewandte Chemie, Vol. 126, Issue 25
  • DOI: 10.1002/ange.201402998

Tuning the catalytic activity of heterogeneous two-dimensional transition metal dichalcogenides for hydrogen evolution
journal, January 2018

  • Noh, Seung Hyo; Hwang, Jeemin; Kang, Joonhee
  • Journal of Materials Chemistry A, Vol. 6, Issue 41
  • DOI: 10.1039/c8ta07141a

The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS 2
journal, May 2015

  • Huang, Yufeng; Nielsen, Robert J.; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 137, Issue 20
  • DOI: 10.1021/jacs.5b03329

The atomic simulation environment—a Python library for working with atoms
journal, June 2017

  • Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 27
  • DOI: 10.1088/1361-648X/aa680e

Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides
journal, October 2015


The Mechanism of CO and CO 2 Hydrogenation to Methanol over Cu-Based Catalysts
journal, March 2015


2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions
journal, December 2015


The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen
journal, January 1958

  • Parsons, Roger
  • Transactions of the Faraday Society, Vol. 54, p. 1053-1063
  • DOI: 10.1039/tf9585401053

3R phase of MoS 2 and WS 2 outperforms the corresponding 2H phase for hydrogen evolution
journal, January 2017

  • Toh, Rou Jun; Sofer, Zdeněk; Luxa, Jan
  • Chemical Communications, Vol. 53, Issue 21
  • DOI: 10.1039/c6cc09952a

Active edge sites in MoSe 2 and WSe 2 catalysts for the hydrogen evolution reaction: a density functional study
journal, January 2014

  • Tsai, Charlie; Chan, Karen; Abild-Pedersen, Frank
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 26
  • DOI: 10.1039/c4cp01237b

Electrochemical Hydrogen Evolution at the Interface of Monolayer VS2 and Water from First-Principles Calculations
journal, December 2018

  • He, Qiaoqiao; Chen, Xiaobo; Chen, Shiqi
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 3
  • DOI: 10.1021/acsami.8b17075

A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals
journal, October 2015


Hydrogen Evolution Over Bimetallic Systems: Understanding the Trends
journal, May 2006

  • Greeley, Jeff; Nørskov, Jens K.; Kibler, Ludwig A.
  • ChemPhysChem, Vol. 7, Issue 5, p. 1032-1035
  • DOI: 10.1002/cphc.200500663

3D WS 2 Nanolayers@Heteroatom-Doped Graphene Films as Hydrogen Evolution Catalyst Electrodes
journal, June 2015

  • Duan, Jingjing; Chen, Sheng; Chambers, Benjamin A.
  • Advanced Materials, Vol. 27, Issue 28
  • DOI: 10.1002/adma.201501692

Potential Dependence of Electrochemical Barriers from ab Initio Calculations
journal, April 2016


Hydrogen Electrocatalysis
journal, May 2006


A Challenge to the G ∼ 0 Interpretation of Hydrogen Evolution
journal, November 2019


CatMAP: A Software Package for Descriptor-Based Microkinetic Mapping of Catalytic Trends
journal, February 2015


Synergistic Phase and Disorder Engineering in 1T-MoSe 2 Nanosheets for Enhanced Hydrogen-Evolution Reaction
journal, May 2017


Trends in the Exchange Current for Hydrogen Evolution
journal, January 2005

  • Nørskov, J. K.; Bligaard, T.; Logadottir, A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 3
  • DOI: 10.1149/1.1856988

Reaction Mechanism with Thermodynamic Structural Screening for Electrochemical Hydrogen Evolution on Monolayer 1T′ Phase MoS 2
journal, July 2018


Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
journal, October 2014

  • Benck, Jesse D.; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs500923c

Conducting MoS 2 Nanosheets as Catalysts for Hydrogen Evolution Reaction
journal, November 2013

  • Voiry, Damien; Salehi, Maryam; Silva, Rafael
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403661s

Mechanisms and Potential-Dependent Energy Barriers for Hydrogen Evolution on Supported MoS2 Catalysts
journal, June 2020

  • Ruffman, Charlie; Gordon, Calum K.; Skúlason, Egill
  • The Journal of Physical Chemistry C, Vol. 124, Issue 31
  • DOI: 10.1021/acs.jpcc.0c04146

Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution
journal, August 2019


Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis
journal, March 2020

  • Lin, Liangxu; Sherrell, Peter; Liu, Yuqing
  • Advanced Energy Materials, Vol. 10, Issue 16
  • DOI: 10.1002/aenm.201903870

Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes
journal, January 2010

  • Sheng, Wenchao; Gasteiger, Hubert A.; Shao-Horn, Yang
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3483106

Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers
journal, February 2013

  • Kong, Desheng; Wang, Haotian; Cha, Judy J.
  • Nano Letters, Vol. 13, Issue 3, p. 1341-1347
  • DOI: 10.1021/nl400258t

Identifying systematic DFT errors in catalytic reactions
journal, January 2015

  • Christensen, Rune; Hansen, Heine A.; Vegge, Tejs
  • Catalysis Science & Technology, Vol. 5, Issue 11
  • DOI: 10.1039/c5cy01332a

Unifying Kinetic and Thermodynamic Analysis of 2 e and 4 e Reduction of Oxygen on Metal Surfaces
journal, March 2014

  • Hansen, Heine A.; Viswanathan, Venkatasubramanian; Nørskov, Jens K.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 13
  • DOI: 10.1021/jp4100608

Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions
journal, July 1997

  • Marković, N. M.; Grgur, B. N.; Ross, P. N.
  • The Journal of Physical Chemistry B, Vol. 101, Issue 27
  • DOI: 10.1021/jp970930d

Hydrogen evolution on nano-particulate transition metal sulfides
journal, January 2009

  • Bonde, Jacob; Moses, Poul G.; Jaramillo, Thomas F.
  • Faraday Discuss., Vol. 140
  • DOI: 10.1039/b803857k

Biomimetic Hydrogen Evolution:  MoS 2 Nanoparticles as Catalyst for Hydrogen Evolution
journal, April 2005

  • Hinnemann, Berit; Moses, Poul Georg; Bonde, Jacob
  • Journal of the American Chemical Society, Vol. 127, Issue 15
  • DOI: 10.1021/ja0504690

2H → 1T phase transition and hydrogen evolution activity of MoS 2 , MoSe 2 , WS 2 and WSe 2 strongly depends on the MX 2 composition
journal, January 2015

  • Ambrosi, Adriano; Sofer, Zdeněk; Pumera, Martin
  • Chemical Communications, Vol. 51, Issue 40
  • DOI: 10.1039/c5cc00803d

A Critical Review on Hydrogen Evolution Electrocatalysis: Re-exploring the Volcano-relationship
journal, October 2016

  • Zeradjanin, Aleksandar R.; Grote, Jan-Philipp; Polymeros, George
  • Electroanalysis, Vol. 28, Issue 10
  • DOI: 10.1002/elan.201600270

Volcano plots in hydrogen electrocatalysis – uses and abuses
journal, January 2014

  • Quaino, Paola; Juarez, Fernanda; Santos, Elizabeth
  • Beilstein Journal of Nanotechnology, Vol. 5
  • DOI: 10.3762/bjnano.5.96

Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets
journal, June 2016

  • Yin, Ying; Han, Jiecai; Zhang, Yumin
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b03714

Free-energy profiles along reduction pathways of MoS2 M-edge and S-edge by dihydrogen: A first-principles study
journal, June 2011

  • Prodhomme, Pierre-Yves; Raybaud, Pascal; Toulhoat, Hervé
  • Journal of Catalysis, Vol. 280, Issue 2
  • DOI: 10.1016/j.jcat.2011.03.017

WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction
journal, August 2012


Work function, electronegativity, and electrochemical behaviour of metals
journal, September 1972


Shift of the Optimum Binding Energy at Higher Rates of Catalysis
journal, October 2019


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Modeling Hydrogen Evolution Reaction Kinetics through Explicit Water–Metal Interfaces
journal, December 2020

  • Tang, Michael T.; Liu, Xinyan; Ji, Yongfei
  • The Journal of Physical Chemistry C, Vol. 124, Issue 51
  • DOI: 10.1021/acs.jpcc.0c08310

Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction
journal, February 2016

  • Voiry, Damien; Yang, Jieun; Chhowalla, Manish
  • Advanced Materials, Vol. 28, Issue 29
  • DOI: 10.1002/adma.201505597

Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
journal, March 1999


The possible hydridic nature of adsorbed hydrogen in the hydrogen evolution reaction
journal, May 1973

  • Barclay, Donald J.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 44, Issue 1
  • DOI: 10.1016/S0022-0728(73)80513-3

Parallelized Screening of Characterized and DFT-Modeled Bimetallic Colloidal Cocatalysts for Photocatalytic Hydrogen Evolution
journal, March 2020


Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution
journal, January 2017


Tuning the MoS 2 Edge-Site Activity for Hydrogen Evolution via Support Interactions
journal, February 2014

  • Tsai, Charlie; Abild-Pedersen, Frank; Nørskov, Jens K.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404444k

Ultrathin WS 2 Nanoflakes as a High-Performance Electrocatalyst for the Hydrogen Evolution Reaction
journal, May 2014

  • Cheng, Liang; Huang, Wenjing; Gong, Qiufang
  • Angewandte Chemie International Edition, Vol. 53, Issue 30
  • DOI: 10.1002/anie.201402315

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Mechanism of Hydrogen Evolution Reaction on 1T-MoS 2 from First Principles
journal, June 2016


CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation
journal, October 2014

  • Saadi, Fadl H.; Carim, Azhar I.; Verlage, Erik
  • The Journal of Physical Chemistry C, Vol. 118, Issue 50
  • DOI: 10.1021/jp5054452

Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
journal, December 2000

  • Henkelman, Graeme; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.1323224

Understanding trends in electrochemical carbon dioxide reduction rates
journal, May 2017

  • Liu, Xinyan; Xiao, Jianping; Peng, Hongjie
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15438

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Hydrogen adsorption on doped MoS2 nanostructures
journal, November 2017


WSe2/rGO hybrid structure: A stable and efficient catalyst for hydrogen evolution reaction
journal, February 2018