DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling Hydrogen Evolution Reaction Kinetics through Explicit Water–Metal Interfaces

Abstract

Despite the apparent simplicity of the hydrogen evolution reaction (HER) and the decades of research into it, controversy remains in the literature regarding the identity of the active site and the competition between the Heyrovsky and Tafel steps. In this work, we use charge-extrapolated ab initio simulations with explicit water in conjunction with mean-field microkinetic modeling to explore the mechanism for HER on both close-packed (111) and stepped (211) transition metals. First, we show that atop H*, beyond a monolayer of hollow H*, is unlikely to play a role in the HER mechanism, given its very positive adsorption energies. The energetics suggests the Volmer–Heyrovsky mechanism to predominate on fcc transition metals under typical operating conditions. Here, we evaluate our theoretical results vs several experimental observations. We show that the Volmer–Heyrovsky mechanism predicts an activity volcano with its peak at a H* binding ΔGH* ≈ 0 eV, consistent with experiment. In contrast, the Volmer–Tafel volcano shows a broad rate plateau between ΔGH* ≈ 0 eV and ΔGH* ≈ – 0.4 eV. We find our theoretical Tafel slopes to be consistent with experimental ones on a range of transition metals. We show that, in line with experimental observations, the introduction of amore » CO(g) atmosphere shifts the strong binding metals toward the weak binding leg. Our study suggests that the simple thermodynamic approach to HER activity still holds, even when a detailed kinetic picture is considered.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [4]
  1. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Guangzhou Univ. (China)
  4. Technical Univ. of Denmark, Lyngby (Denmark)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1767971
Grant/Contract Number:  
AC02-76SF00515; SC0004993; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 124; Journal Issue: 51; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Metals; Transition states; Binding energy; Hollow structures; Evolution reactions

Citation Formats

Tang, Michael T., Liu, Xinyan, Ji, Yongfei, Norskov, Jens K., and Chan, Karen. Modeling Hydrogen Evolution Reaction Kinetics through Explicit Water–Metal Interfaces. United States: N. p., 2020. Web. doi:10.1021/acs.jpcc.0c08310.
Tang, Michael T., Liu, Xinyan, Ji, Yongfei, Norskov, Jens K., & Chan, Karen. Modeling Hydrogen Evolution Reaction Kinetics through Explicit Water–Metal Interfaces. United States. https://doi.org/10.1021/acs.jpcc.0c08310
Tang, Michael T., Liu, Xinyan, Ji, Yongfei, Norskov, Jens K., and Chan, Karen. Tue . "Modeling Hydrogen Evolution Reaction Kinetics through Explicit Water–Metal Interfaces". United States. https://doi.org/10.1021/acs.jpcc.0c08310. https://www.osti.gov/servlets/purl/1767971.
@article{osti_1767971,
title = {Modeling Hydrogen Evolution Reaction Kinetics through Explicit Water–Metal Interfaces},
author = {Tang, Michael T. and Liu, Xinyan and Ji, Yongfei and Norskov, Jens K. and Chan, Karen},
abstractNote = {Despite the apparent simplicity of the hydrogen evolution reaction (HER) and the decades of research into it, controversy remains in the literature regarding the identity of the active site and the competition between the Heyrovsky and Tafel steps. In this work, we use charge-extrapolated ab initio simulations with explicit water in conjunction with mean-field microkinetic modeling to explore the mechanism for HER on both close-packed (111) and stepped (211) transition metals. First, we show that atop H*, beyond a monolayer of hollow H*, is unlikely to play a role in the HER mechanism, given its very positive adsorption energies. The energetics suggests the Volmer–Heyrovsky mechanism to predominate on fcc transition metals under typical operating conditions. Here, we evaluate our theoretical results vs several experimental observations. We show that the Volmer–Heyrovsky mechanism predicts an activity volcano with its peak at a H* binding ΔGH* ≈ 0 eV, consistent with experiment. In contrast, the Volmer–Tafel volcano shows a broad rate plateau between ΔGH* ≈ 0 eV and ΔGH* ≈ – 0.4 eV. We find our theoretical Tafel slopes to be consistent with experimental ones on a range of transition metals. We show that, in line with experimental observations, the introduction of a CO(g) atmosphere shifts the strong binding metals toward the weak binding leg. Our study suggests that the simple thermodynamic approach to HER activity still holds, even when a detailed kinetic picture is considered.},
doi = {10.1021/acs.jpcc.0c08310},
journal = {Journal of Physical Chemistry. C},
number = 51,
volume = 124,
place = {United States},
year = {Tue Dec 15 00:00:00 EST 2020},
month = {Tue Dec 15 00:00:00 EST 2020}
}

Works referenced in this record:

A combined surface-enhanced infrared and electrochemical kinetics study of hydrogen adsorption and evolution on a Pt electrode
journal, January 2005


Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution
journal, January 1996

  • Markovića, Nenad M.; Sarraf, Stella T.; Gasteiger, Hubert A.
  • J. Chem. Soc., Faraday Trans., Vol. 92, Issue 20
  • DOI: 10.1039/FT9969203719

Does a Thermoneutral Electrocatalyst Correspond to the Apex of a Volcano Plot for a Simple Two‐Electron Process?
journal, May 2020


Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals
journal, January 1961


CO 2 Electroreduction on Well-Defined Bimetallic Surfaces: Cu Overlayers on Pt(111) and Pt(211)
journal, September 2013

  • Varela, Ana Sofia; Schlaup, Christian; Jovanov, Zarko P.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 40
  • DOI: 10.1021/jp406913f

The absolute electrode potential: an explanatory note (Recommendations 1986)
journal, January 1986


Comparison of Hydrogen Electroadsorption from the Electrolyte with Hydrogen Adsorption from the Gas Phase
journal, January 1996

  • Jerkiewicz, Gregory
  • Journal of The Electrochemical Society, Vol. 143, Issue 4
  • DOI: 10.1149/1.1836623

New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism
journal, January 2014

  • Durst, J.; Siebel, A.; Simon, C.
  • Energy Environ. Sci., Vol. 7, Issue 7
  • DOI: 10.1039/C4EE00440J

Spectroscopic identification of the adsorbed intermediate in hydrogen evolution on platinum
journal, March 1988

  • Nichols, R. J.; Bewick, A.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 243, Issue 2
  • DOI: 10.1016/0022-0728(88)80047-0

Modeling the electrified solid–liquid interface
journal, November 2008


Nickel–silver alloy electrocatalysts for hydrogen evolution and oxidation in an alkaline electrolyte
journal, January 2014

  • Tang, Maureen H.; Hahn, Christopher; Klobuchar, Aidan J.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 36
  • DOI: 10.1039/C4CP01385A

Design of an Active Site towards Optimal Electrocatalysis: Overlayers, Surface Alloys and Near-Surface Alloys of Cu/Pt(111)
journal, October 2012

  • Bandarenka, Aliaksandr S.; Varela, Ana Sofia; Karamad, Mohammedreza
  • Angewandte Chemie International Edition, Vol. 51, Issue 47
  • DOI: 10.1002/anie.201205314

Trends in the Catalytic Activity of Hydrogen Evolution during CO 2 Electroreduction on Transition Metals
journal, March 2018


Structural investigation by infra-red spectroscopy of adsorbed hydrogen on platinum
journal, January 1982

  • Bewick, A.; Russell, J. W.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 132
  • DOI: 10.1016/0022-0728(82)85029-8

A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals
journal, October 2015


Hydrogen evolution on silver single crystal electrodes—first results
journal, January 1999


A Challenge to the G ∼ 0 Interpretation of Hydrogen Evolution
journal, November 2019


An Unusual Exchange Mechanism in the Tafel Reaction on Pt(110)‐(1×1) Surfaces
journal, July 2019

  • He, Zheng‐Da; Chen, Yan‐Xia; Juarez, Fernanda
  • ChemElectroChem, Vol. 6, Issue 13
  • DOI: 10.1002/celc.201900681

Electrochemical Hydrogen Oxidation on Pt(110): A Combined Direct Molecular Dynamics/Density Functional Theory Study
journal, March 2010

  • Santana, Juan A.; Mateo, Juan J.; Ishikawa, Yasuyuki
  • The Journal of Physical Chemistry C, Vol. 114, Issue 11
  • DOI: 10.1021/jp909834q

CatMAP: A Software Package for Descriptor-Based Microkinetic Mapping of Catalytic Trends
journal, February 2015


Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces
journal, January 2014

  • Shi, Chuan; Hansen, Heine A.; Lausche, Adam C.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 10
  • DOI: 10.1039/c3cp54822h

Trends in the Exchange Current for Hydrogen Evolution
journal, January 2005

  • Nørskov, J. K.; Bligaard, T.; Logadottir, A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 3
  • DOI: 10.1149/1.1856988

Competition between CO 2 Reduction and H 2 Evolution on Transition-Metal Electrocatalysts
journal, September 2014

  • Zhang, Yin-Jia; Sethuraman, Vijay; Michalsky, Ronald
  • ACS Catalysis, Vol. 4, Issue 10
  • DOI: 10.1021/cs5012298

Assessing the reliability of calculated catalytic ammonia synthesis rates
journal, July 2014


Catalysis-Hub.org, an open electronic structure database for surface reactions
journal, May 2019


Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H
journal, August 2002


Effects of chemisorbed sulphur on the hydrogen adsorption and evolution on metal single crystal surfaces
journal, January 1991


Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes
journal, January 2010

  • Sheng, Wenchao; Gasteiger, Hubert A.; Shao-Horn, Yang
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3483106

Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy
journal, May 2007


Unique activity of Pd monomers: hydrogen evolution at AuPd(111) surface alloys
journal, January 2008

  • Pluntke, Y.; Kibler, L. A.; Kolb, D. M.
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 25
  • DOI: 10.1039/b802915f

Study of the Exchange Current Density for the Hydrogen Oxidation and Evolution Reactions
journal, January 2007

  • Neyerlin, K. C.; Gu, Wenbin; Jorne, Jacob
  • Journal of The Electrochemical Society, Vol. 154, Issue 7
  • DOI: 10.1149/1.2733987

Electrofuels for the transport sector: A review of production costs
journal, January 2018

  • Brynolf, Selma; Taljegard, Maria; Grahn, Maria
  • Renewable and Sustainable Energy Reviews, Vol. 81
  • DOI: 10.1016/j.rser.2017.05.288

Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions
journal, July 1997

  • Marković, N. M.; Grgur, B. N.; Ross, P. N.
  • The Journal of Physical Chemistry B, Vol. 101, Issue 27
  • DOI: 10.1021/jp970930d

Some Abnormal Hydrogen Electrode Reactions
journal, January 1959

  • Ives, D. J. G.
  • Canadian Journal of Chemistry, Vol. 37, Issue 1
  • DOI: 10.1139/v59-028

Cathodic Polarization of Silver in Sulphuric acid
journal, January 1959

  • Antoniou, A. A.; Wetmore, F. E. W.
  • Canadian Journal of Chemistry, Vol. 37, Issue 1
  • DOI: 10.1139/v59-029

Kinetics of the hydrogen evolution reaction on gold electrode. A new case of the barrierless discharge
journal, September 2011


Correcting the Hydrogen Diffusion Limitation in Rotating Disk Electrode Measurements of Hydrogen Evolution Reaction Kinetics
journal, January 2015

  • Zheng, Jie; Yan, Yushan; Xu, Bingjun
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0501514jes

Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces
journal, January 2013

  • Sheng, Wenchao; Myint, MyatNoeZin; Chen, Jingguang G.
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee00045a

Avoiding pitfalls in the modeling of electrochemical interfaces
journal, January 2013


Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes
journal, March 2017

  • Ledezma-Yanez, Isis; Wallace, W. David Z.; Sebastián-Pascual, Paula
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.31

The influence of surface crystallography on the rate of hydrogen evolution at Pt electrodes
journal, July 1987

  • Seto, Kan; Iannelli, Anna; Love, Bruce
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 226, Issue 1-2
  • DOI: 10.1016/0022-0728(87)80057-8

Adsorption of hydrogen on Pt(111) and Pt(100) surfaces and its role in the HOR
journal, October 2008

  • Strmcnik, D.; Tripkovic, D.; van der Vliet, D.
  • Electrochemistry Communications, Vol. 10, Issue 10, p. 1602-1605
  • DOI: 10.1016/j.elecom.2008.08.019

Understanding Trends in Catalytic Activity: The Effect of Adsorbate–Adsorbate Interactions for CO Oxidation Over Transition Metals
journal, February 2010


State of adsorption and coverage by overpotential-deposited H in the H2 evolution reaction at Au and Pt
journal, August 1986


Assessment of Constant-Potential Implicit Solvation Calculations of Electrochemical Energy Barriers for H 2 Evolution on Pt
journal, January 2019

  • Van den Bossche, Maxime; Skúlason, Egill; Rose-Petruck, Christoph
  • The Journal of Physical Chemistry C, Vol. 123, Issue 7
  • DOI: 10.1021/acs.jpcc.8b10046

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Hydrogen: the future energy carrier
journal, July 2010

  • Züttel, Andreas; Remhof, Arndt; Borgschulte, Andreas
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, Issue 1923
  • DOI: 10.1098/rsta.2010.0113

Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations
journal, October 2010

  • Skúlason, Egill; Tripkovic, Vladimir; Björketun, Mårten E.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 42
  • DOI: 10.1021/jp1048887

Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption
journal, February 2013

  • Strmcnik, Dusan; Uchimura, Masanobu; Wang, Chao
  • Nature Chemistry, Vol. 5, Issue 4
  • DOI: 10.1038/nchem.1574

Surface science studies of model fuel cell electrocatalysts
journal, April 2002


Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between opd and upd H
journal, April 1998


Understanding the apparent fractional charge of protons in the aqueous electrochemical double layer
journal, August 2018


Potential dependence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. Part 2: Pt(100)
journal, January 2006

  • López-Cudero, Ana; Cuesta, Ángel; Gutiérrez, Claudio
  • Journal of Electroanalytical Chemistry, Vol. 586, Issue 2
  • DOI: 10.1016/j.jelechem.2005.10.003

Electrochemical Barriers Made Simple
journal, June 2015


The Reversible Hydrogen Electrode:  Potential-Dependent Activation Energies over Platinum from Quantum Theory
journal, July 2004

  • Cai, Yu; Anderson, Alfred B.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 28
  • DOI: 10.1021/jp037126d

New insights on hydrogen evolution at Au single crystal electrodes
journal, June 2018


Absolute coverages of CO and O on Pt(111); Comparison of saturation CO coverages on Pt(100), (110) and (111) surfaces
journal, October 1982


Study of hydrogen evolution reaction in acid medium on Pt microelectrodes
journal, August 2001


Coadsorption of sulphur and hydrogen on Pt(111) studied by radiotracer and electrochemical techniques
journal, April 1986


Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis
journal, January 1986

  • Conway, B. E.; Bai, Lijun
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 198, Issue 1
  • DOI: 10.1016/0022-0728(86)90033-1

Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media
journal, November 2014

  • Durst, Julien; Simon, Christoph; Hasché, Frédéric
  • Journal of The Electrochemical Society, Vol. 162, Issue 1
  • DOI: 10.1149/2.0981501jes

Mechanism of the Hydrogen Evolution Reaction in Mildly Acidic Environments on Gold
journal, January 2017

  • Kahyarian, Aria; Brown, Bruce; Nesic, Srdjan
  • Journal of The Electrochemical Society, Vol. 164, Issue 6
  • DOI: 10.1149/2.1061706jes