DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Semiconducting Two‐Dimensional Polymer as an Organic Electrochemical Transistor Active Layer

Abstract

Abstract Organic electrochemical transistors (OECTs) are devices with broad potential in bioelectronic sensing, circuits, and neuromorphic hardware. Their unique properties arise from the use of organic mixed ionic/electronic conductors (OMIECs) as the active channel. Typical OMIECs are linear polymers, where defined and controlled microstructure/morphology, and reliable characterization of transport and charging can be elusive. Semiconducting two‐dimensional polymers (2DPs) present a new avenue in OMIEC materials development, enabling electronic transport along with precise control of well‐defined channels ideal for ion transport/intercalation. To this end, a recently reported 2DP, TIIP, is synthesized and patterned at 10 µm resolution as the channel of a transistor. The TIIP films demonstrate textured microstructure and show semiconducting properties with accessible oxidation states. Operating in an aqueous electrolyte, the 2DP‐OECT exhibits a device‐scale hole mobility of 0.05 cm 2 V –1 s –1 and a µ C * figure of merit of 1.75 F cm –1 V –1 s –1 . 2DP OMIECs thus offer new synthetic degrees of freedom to control OECT performance and may enable additional opportunities such as ion selectivity or improved stability through reduced morphological modulation during device operation.

Authors:
 [1]; ORCiD logo [2];  [3];  [4];  [2];  [5];  [3]; ORCiD logo [2]; ORCiD logo [1]
  1. Dept. of Biomedical Engineering Northwestern University Evanston IL 60208 USA, Simpson Querrey Institute Northwestern University Chicago IL 60611 USA
  2. Department of Chemistry Northwestern University Evanston IL 60208 USA
  3. School of Chemistry The University of Sydney Sydney NSW 2006 Australia
  4. School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
  5. School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA, University of Colorado Boulder Renewable and Sustainable Energy Institute Boulder CO 80303 USA, National Renewable Energy Laboratory Chemistry and Nanoscience Center Golden CO 80401 USA, University of Colorado Boulder Department of Chemical and Biological Engineering Boulder CO 80303 USA, University of Colorado Boulder Department of Chemistry Boulder CO 80303 USA
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1864382
Alternate Identifier(s):
OSTI ID: 1863215; OSTI ID: 1865502
Report Number(s):
NREL/JA-5A00-82606
Journal ID: ISSN 0935-9648; 2110703
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Published Article
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 34 Journal Issue: 21; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
36 MATERIALS SCIENCE; 2D-polymer; covalent organic framework; organic electrochemical transistor; thin film transistor

Citation Formats

Rashid, Reem B., Evans, Austin M., Hall, Lyndon A., Dasari, Raghunath R., Roesner, Emily K., Marder, Seth R., D'Allesandro, Deanna M., Dichtel, William R., and Rivnay, Jonathan. A Semiconducting Two‐Dimensional Polymer as an Organic Electrochemical Transistor Active Layer. Germany: N. p., 2022. Web. doi:10.1002/adma.202110703.
Rashid, Reem B., Evans, Austin M., Hall, Lyndon A., Dasari, Raghunath R., Roesner, Emily K., Marder, Seth R., D'Allesandro, Deanna M., Dichtel, William R., & Rivnay, Jonathan. A Semiconducting Two‐Dimensional Polymer as an Organic Electrochemical Transistor Active Layer. Germany. https://doi.org/10.1002/adma.202110703
Rashid, Reem B., Evans, Austin M., Hall, Lyndon A., Dasari, Raghunath R., Roesner, Emily K., Marder, Seth R., D'Allesandro, Deanna M., Dichtel, William R., and Rivnay, Jonathan. Thu . "A Semiconducting Two‐Dimensional Polymer as an Organic Electrochemical Transistor Active Layer". Germany. https://doi.org/10.1002/adma.202110703.
@article{osti_1864382,
title = {A Semiconducting Two‐Dimensional Polymer as an Organic Electrochemical Transistor Active Layer},
author = {Rashid, Reem B. and Evans, Austin M. and Hall, Lyndon A. and Dasari, Raghunath R. and Roesner, Emily K. and Marder, Seth R. and D'Allesandro, Deanna M. and Dichtel, William R. and Rivnay, Jonathan},
abstractNote = {Abstract Organic electrochemical transistors (OECTs) are devices with broad potential in bioelectronic sensing, circuits, and neuromorphic hardware. Their unique properties arise from the use of organic mixed ionic/electronic conductors (OMIECs) as the active channel. Typical OMIECs are linear polymers, where defined and controlled microstructure/morphology, and reliable characterization of transport and charging can be elusive. Semiconducting two‐dimensional polymers (2DPs) present a new avenue in OMIEC materials development, enabling electronic transport along with precise control of well‐defined channels ideal for ion transport/intercalation. To this end, a recently reported 2DP, TIIP, is synthesized and patterned at 10 µm resolution as the channel of a transistor. The TIIP films demonstrate textured microstructure and show semiconducting properties with accessible oxidation states. Operating in an aqueous electrolyte, the 2DP‐OECT exhibits a device‐scale hole mobility of 0.05 cm 2 V –1 s –1 and a µ C * figure of merit of 1.75 F cm –1 V –1 s –1 . 2DP OMIECs thus offer new synthetic degrees of freedom to control OECT performance and may enable additional opportunities such as ion selectivity or improved stability through reduced morphological modulation during device operation.},
doi = {10.1002/adma.202110703},
journal = {Advanced Materials},
number = 21,
volume = 34,
place = {Germany},
year = {Thu Apr 21 00:00:00 EDT 2022},
month = {Thu Apr 21 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.202110703

Save / Share:

Works referenced in this record:

Influence of Side Chains on the n-Type Organic Electrochemical Transistor Performance
journal, January 2021

  • Ohayon, David; Savva, Achilleas; Du, Weiyuan
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 3
  • DOI: 10.1021/acsami.0c18599

A Two‐Dimensional Polymer Synthesized at the Air/Water Interface
journal, August 2018

  • Müller, Vivian; Hinaut, Antoine; Moradi, Mina
  • Angewandte Chemie International Edition, Vol. 57, Issue 33
  • DOI: 10.1002/anie.201804937

Device physics of organic electrochemical transistors
journal, December 2018


Organic mixed ionic–electronic conductors
journal, August 2019


Lactate Detection in Tumor Cell Cultures Using Organic Transistor Circuits
journal, January 2017

  • Braendlein, Marcel; Pappa, Anna-Maria; Ferro, Marc
  • Advanced Materials, Vol. 29, Issue 13
  • DOI: 10.1002/adma.201605744

Organic electrochemical transistors
journal, January 2018


Oriented Covalent Organic Framework Film on Graphene for Robust Ambipolar Vertical Organic Field-Effect Transistor
journal, May 2017


N-type organic electrochemical transistors with stability in water
journal, October 2016

  • Giovannitti, Alexander; Nielsen, Christian B.; Sbircea, Dan-Tiberiu
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13066

High‐Sensitivity Acoustic Molecular Sensors Based on Large‐Area, Spray‐Coated 2D Covalent Organic Frameworks
journal, September 2020

  • Evans, Austin M.; Bradshaw, Nathan P.; Litchfield, Brian
  • Advanced Materials, Vol. 32, Issue 42
  • DOI: 10.1002/adma.202004205

Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors
journal, October 2015

  • Gkoupidenis, Paschalis; Schaefer, Nathan; Garlan, Benjamin
  • Advanced Materials, Vol. 27, Issue 44
  • DOI: 10.1002/adma.201503674

Two-dimensional sp 2 carbon–conjugated covalent organic frameworks
journal, August 2017


Covalent organic frameworks: a materials platform for structural and functional designs
journal, September 2016


Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties
journal, January 2019

  • Thomas, Simil; Li, Hong; Dasari, Raghunath R.
  • Materials Horizons, Vol. 6, Issue 9
  • DOI: 10.1039/C9MH00035F

High transconductance organic electrochemical transistors
journal, July 2013

  • Khodagholy, Dion; Rivnay, Jonathan; Sessolo, Michele
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3133

The Effect of Alkyl Spacers on the Mixed Ionic‐Electronic Conduction Properties of N‐Type Polymers
journal, January 2021

  • Maria, Iuliana P.; Paulsen, Bryan D.; Savva, Achilleas
  • Advanced Functional Materials, Vol. 31, Issue 14
  • DOI: 10.1002/adfm.202008718

Statistical Mechanics of Cross‐Linked Polymer Networks I. Rubberlike Elasticity
journal, November 1943

  • Flory, Paul J.; Rehner, John
  • The Journal of Chemical Physics, Vol. 11, Issue 11
  • DOI: 10.1063/1.1723791

Controlling the mode of operation of organic transistors through side-chain engineering
journal, October 2016

  • Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 43
  • DOI: 10.1073/pnas.1608780113

Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor
journal, June 2018

  • Pappa, Anna Maria; Ohayon, David; Giovannitti, Alexander
  • Science Advances, Vol. 4, Issue 6
  • DOI: 10.1126/sciadv.aat0911

A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing
journal, February 2017

  • van de Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J.
  • Nature Materials, Vol. 16, Issue 4
  • DOI: 10.1038/nmat4856

Time‐Resolved Structural Kinetics of an Organic Mixed Ionic–Electronic Conductor
journal, August 2020

  • Paulsen, Bryan D.; Wu, Ruiheng; Takacs, Christopher J.
  • Advanced Materials, Vol. 32, Issue 40
  • DOI: 10.1002/adma.202003404

Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices
journal, November 2019


An n -Channel Two-Dimensional Covalent Organic Framework
journal, September 2011

  • Ding, Xuesong; Chen, Long; Honsho, Yoshihito
  • Journal of the American Chemical Society, Vol. 133, Issue 37
  • DOI: 10.1021/ja2052396

Mixed Ionic-Electronic Transport in Polymers
journal, July 2021


Electronically Coupled 2D Polymer/MoS 2 Heterostructures
journal, December 2020

  • Balch, Halleh B.; Evans, Austin M.; Dasari, Raghunath R.
  • Journal of the American Chemical Society, Vol. 142, Issue 50
  • DOI: 10.1021/jacs.0c10151

On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers
journal, September 2019


Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors
journal, June 2017

  • Giridharagopal, R.; Flagg, L. Q.; Harrison, J. S.
  • Nature Materials, Vol. 16, Issue 7
  • DOI: 10.1038/nmat4918

Highly Conformable Conducting Polymer Electrodes for In Vivo Recordings
journal, August 2011

  • Khodagholy, Dion; Doublet, Thomas; Gurfinkel, Moshe
  • Advanced Materials, Vol. 23, Issue 36
  • DOI: 10.1002/adma.201102378

Highly conducting Wurster-type twisted covalent organic frameworks
journal, January 2020

  • Rotter, Julian M.; Guntermann, Roman; Auth, Michael
  • Chemical Science, Vol. 11, Issue 47
  • DOI: 10.1039/D0SC03909H

Large Exciton Diffusion Coefficients in Two-Dimensional Covalent Organic Frameworks with Different Domain Sizes Revealed by Ultrafast Exciton Dynamics
journal, July 2020

  • Flanders, Nathan C.; Kirschner, Matthew S.; Kim, Pyosang
  • Journal of the American Chemical Society, Vol. 142, Issue 35
  • DOI: 10.1021/jacs.0c05404

High-performance transistors for bioelectronics through tuning of channel thickness
journal, May 2015


High-Rate Charge-Carrier Transport in Porphyrin Covalent Organic Frameworks: Switching from Hole to Electron to Ambipolar Conduction
journal, January 2012


Energetic Control of Redox‐Active Polymers toward Safe Organic Bioelectronic Materials
journal, March 2020

  • Giovannitti, Alexander; Rashid, Reem B.; Thiburce, Quentin
  • Advanced Materials, Vol. 32, Issue 16
  • DOI: 10.1002/adma.201908047

Synthesis of Metallophthalocyanine Covalent Organic Frameworks That Exhibit High Carrier Mobility and Photoconductivity
journal, December 2010

  • Ding, Xuesong; Guo, Jia; Feng, Xiao
  • Angewandte Chemie International Edition, Vol. 50, Issue 6
  • DOI: 10.1002/anie.201005919

Benchmarking organic mixed conductors for transistors
journal, November 2017


Balancing Ionic and Electronic Conduction for High‐Performance Organic Electrochemical Transistors
journal, January 2020

  • Savva, Achilleas; Hallani, Rawad; Cendra, Camila
  • Advanced Functional Materials, Vol. 30, Issue 11
  • DOI: 10.1002/adfm.201907657

Development of metal-free layered semiconductors for 2D organic field-effect transistors
journal, January 2021

  • Burmeister, David; Trunk, Matthias G.; Bojdys, Michael J.
  • Chemical Society Reviews, Vol. 50, Issue 20
  • DOI: 10.1039/D1CS00497B

Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors
journal, August 2016

  • Nielsen, Christian B.; Giovannitti, Alexander; Sbircea, Dan-Tiberiu
  • Journal of the American Chemical Society, Vol. 138, Issue 32
  • DOI: 10.1021/jacs.6b05280

n ‐Type Rigid Semiconducting Polymers Bearing Oligo(Ethylene Glycol) Side Chains for High‐Performance Organic Electrochemical Transistors
journal, March 2021

  • Chen, Xingxing; Marks, Adam; Paulsen, Bryan D.
  • Angewandte Chemie International Edition, Vol. 60, Issue 17
  • DOI: 10.1002/anie.202013998

Anomalous transport effects in the impedance of porous film electrodes
journal, September 1999

  • Bisquert, Juan; Garcia-Belmonte, Germà; Fabregat-Santiago, Francisco
  • Electrochemistry Communications, Vol. 1, Issue 9
  • DOI: 10.1016/S1388-2481(99)00084-3

Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors
journal, February 2019

  • Flagg, Lucas Q.; Bischak, Connor G.; Onorato, Jonathan W.
  • Journal of the American Chemical Society, Vol. 141, Issue 10
  • DOI: 10.1021/jacs.8b12640

Fullerene Active Layers for n-Type Organic Electrochemical Transistors
journal, July 2019

  • Bischak, Connor G.; Flagg, Lucas Q.; Yan, Kangrong
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 31
  • DOI: 10.1021/acsami.9b11370

Understanding volumetric capacitance in conducting polymers
journal, March 2016

  • Proctor, Christopher M.; Rivnay, Jonathan; Malliaras, George G.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 54, Issue 15
  • DOI: 10.1002/polb.24038

Semiconducting Small Molecules as Active Materials for p‐Type Accumulation Mode Organic Electrochemical Transistors
journal, May 2020

  • Parr, Zachary S.; Rashid, Reem B.; Paulsen, Bryan D.
  • Advanced Electronic Materials, Vol. 6, Issue 6
  • DOI: 10.1002/aelm.202000215

Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks
journal, March 2021


Highly Crystalline and Semiconducting Imine‐Based Two‐Dimensional Polymers Enabled by Interfacial Synthesis
journal, February 2020

  • Sahabudeen, Hafeesudeen; Qi, Haoyuan; Ballabio, Marco
  • Angewandte Chemie International Edition, Vol. 59, Issue 15
  • DOI: 10.1002/anie.201915217

Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework
journal, August 2016