DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stretchable Redox‐Active Semiconducting Polymers for High‐Performance Organic Electrochemical Transistors

Abstract

Abstract Organic electrochemical transistors (OECTs) represent an emerging device platform for next‐generation bioelectronics owing to the uniquely high amplification and sensitivity to biological signals. For achieving seamless tissue–electronics interfaces for accurate signal acquisition, skin‐like softness and stretchability are essential requirements, but they have not yet been imparted onto high‐performance OECTs, largely due to the lack of stretchable redox‐active semiconducting polymers. Here, a stretchable semiconductor is reported for OECT devices, namely poly(2‐(3,3′‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)‐[2,2′‐bithiophen]‐5)yl thiophene) (p(g2T‐T)), which gives exceptional stretchability over 200% strain and 5000 repeated stretching cycles, together with OECT performance on par with the state‐of‐the‐art. Validated by systematic characterizations and comparisons of different polymers, the key design features of this polymer that enable the combination of high stretchability and high OECT performance are a nonlinear backbone architecture, a moderate side‐chain density, and a sufficiently high molecular weight. Using this highly stretchable polymer semiconductor, an intrinsically stretchable OECT is fabricated with high normalized transconductance (≈223 S cm −1 ) and biaxial stretchability up to 100% strain. Furthermore, on‐skin electrocardiogram (ECG) recording is demonstrated, which combines built‐in amplification and unprecedented skin conformability.

Authors:
 [1];  [1];  [1];  [1];  [2];  [3];  [4];  [1];  [3];  [1];  [1];  [1];  [1];  [1];  [4];  [5];  [6]; ORCiD logo [7]
  1. Pritzker School of Molecular Engineering The University of Chicago Chicago IL 60637 USA
  2. Department of Chemistry University of Oxford Oxford OX1 3TA UK
  3. X‐Ray Science Division Argonne National Laboratory Lemont IL 60439 USA
  4. Department of Chemistry University of Chicago Chicago IL 60637 USA
  5. Department of Chemistry University of Oxford Oxford OX1 3TA UK, KAUST Solar Center (KSC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Saudi Arabia
  6. Nanoscience and Technology Division Argonne National Laboratory Lemont IL 60439 USA
  7. Pritzker School of Molecular Engineering The University of Chicago Chicago IL 60637 USA, Nanoscience and Technology Division Argonne National Laboratory Lemont IL 60439 USA
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Department of the Navy, Office of Naval Research (ONR)
OSTI Identifier:
1865982
Alternate Identifier(s):
OSTI ID: 1865984; OSTI ID: 1872958
Grant/Contract Number:  
AC02-06CH11357; N00014-21-1-2266
Resource Type:
Published Article
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 34 Journal Issue: 23; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
36 MATERIALS SCIENCE; organic electrochemical transistors; redox-active polymer semiconductors; stretchable electronics

Citation Formats

Dai, Yahao, Dai, Shilei, Li, Nan, Li, Yang, Moser, Maximilian, Strzalka, Joseph, Prominski, Aleksander, Liu, Youdi, Zhang, Qingteng, Li, Songsong, Hu, Huawei, Liu, Wei, Chatterji, Shivani, Cheng, Ping, Tian, Bozhi, McCulloch, Iain, Xu, Jie, and Wang, Sihong. Stretchable Redox‐Active Semiconducting Polymers for High‐Performance Organic Electrochemical Transistors. Germany: N. p., 2022. Web. doi:10.1002/adma.202201178.
Dai, Yahao, Dai, Shilei, Li, Nan, Li, Yang, Moser, Maximilian, Strzalka, Joseph, Prominski, Aleksander, Liu, Youdi, Zhang, Qingteng, Li, Songsong, Hu, Huawei, Liu, Wei, Chatterji, Shivani, Cheng, Ping, Tian, Bozhi, McCulloch, Iain, Xu, Jie, & Wang, Sihong. Stretchable Redox‐Active Semiconducting Polymers for High‐Performance Organic Electrochemical Transistors. Germany. https://doi.org/10.1002/adma.202201178
Dai, Yahao, Dai, Shilei, Li, Nan, Li, Yang, Moser, Maximilian, Strzalka, Joseph, Prominski, Aleksander, Liu, Youdi, Zhang, Qingteng, Li, Songsong, Hu, Huawei, Liu, Wei, Chatterji, Shivani, Cheng, Ping, Tian, Bozhi, McCulloch, Iain, Xu, Jie, and Wang, Sihong. Mon . "Stretchable Redox‐Active Semiconducting Polymers for High‐Performance Organic Electrochemical Transistors". Germany. https://doi.org/10.1002/adma.202201178.
@article{osti_1865982,
title = {Stretchable Redox‐Active Semiconducting Polymers for High‐Performance Organic Electrochemical Transistors},
author = {Dai, Yahao and Dai, Shilei and Li, Nan and Li, Yang and Moser, Maximilian and Strzalka, Joseph and Prominski, Aleksander and Liu, Youdi and Zhang, Qingteng and Li, Songsong and Hu, Huawei and Liu, Wei and Chatterji, Shivani and Cheng, Ping and Tian, Bozhi and McCulloch, Iain and Xu, Jie and Wang, Sihong},
abstractNote = {Abstract Organic electrochemical transistors (OECTs) represent an emerging device platform for next‐generation bioelectronics owing to the uniquely high amplification and sensitivity to biological signals. For achieving seamless tissue–electronics interfaces for accurate signal acquisition, skin‐like softness and stretchability are essential requirements, but they have not yet been imparted onto high‐performance OECTs, largely due to the lack of stretchable redox‐active semiconducting polymers. Here, a stretchable semiconductor is reported for OECT devices, namely poly(2‐(3,3′‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)‐[2,2′‐bithiophen]‐5)yl thiophene) (p(g2T‐T)), which gives exceptional stretchability over 200% strain and 5000 repeated stretching cycles, together with OECT performance on par with the state‐of‐the‐art. Validated by systematic characterizations and comparisons of different polymers, the key design features of this polymer that enable the combination of high stretchability and high OECT performance are a nonlinear backbone architecture, a moderate side‐chain density, and a sufficiently high molecular weight. Using this highly stretchable polymer semiconductor, an intrinsically stretchable OECT is fabricated with high normalized transconductance (≈223 S cm −1 ) and biaxial stretchability up to 100% strain. Furthermore, on‐skin electrocardiogram (ECG) recording is demonstrated, which combines built‐in amplification and unprecedented skin conformability.},
doi = {10.1002/adma.202201178},
journal = {Advanced Materials},
number = 23,
volume = 34,
place = {Germany},
year = {Mon May 02 00:00:00 EDT 2022},
month = {Mon May 02 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.202201178

Save / Share:

Works referenced in this record:

Wearable biosensors for healthcare monitoring
journal, February 2019

  • Kim, Jayoung; Campbell, Alan S.; de Ávila, Berta Esteban-Fernández
  • Nature Biotechnology, Vol. 37, Issue 4
  • DOI: 10.1038/s41587-019-0045-y

Skin electronics from scalable fabrication of an intrinsically stretchable transistor array
journal, February 2018


Organic mixed ionic–electronic conductors
journal, August 2019


Materials in Organic Electrochemical Transistors for Bioelectronic Applications: Past, Present, and Future
journal, December 2018

  • Moser, Maximilian; Ponder, James F.; Wadsworth, Andrew
  • Advanced Functional Materials, Vol. 29, Issue 21
  • DOI: 10.1002/adfm.201807033

Dissecting Biological and Synthetic Soft–Hard Interfaces for Tissue-Like Systems
journal, October 2021


Organic electrochemical transistors
journal, January 2018


Stretchable Polymer Semiconductors for Plastic Electronics
journal, January 2018

  • Wang, Ging-Ji Nathan; Gasperini, Andrea; Bao, Zhenan
  • Advanced Electronic Materials, Vol. 4, Issue 2
  • DOI: 10.1002/aelm.201700429

High‐Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology
journal, July 2019

  • Matsuhisa, Naoji; Jiang, Ying; Liu, Zhiyuan
  • Advanced Electronic Materials, Vol. 5, Issue 8
  • DOI: 10.1002/aelm.201900347

Biomimicking Stretchable Organic Electrochemical Transistor
journal, August 2019

  • Li, Yuanzhe; Wang, Naixiang; Yang, Anneng
  • Advanced Electronic Materials, Vol. 5, Issue 10
  • DOI: 10.1002/aelm.201900566

Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability
journal, August 2020

  • Moser, Maximilian; Hidalgo, Tania Cecilia; Surgailis, Jokubas
  • Advanced Materials, Vol. 32, Issue 37
  • DOI: 10.1002/adma.202002748

Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors
journal, May 2021


Microfluidic Integrated Organic Electrochemical Transistor with a Nanoporous Membrane for Amyloid-β Detection
journal, March 2021

  • Koklu, Anil; Wustoni, Shofarul; Musteata, Valentina-Elena
  • ACS Nano, Vol. 15, Issue 5
  • DOI: 10.1021/acsnano.0c09893

Stretchable transistors and functional circuits for human-integrated electronics
journal, January 2021


Bio-Integrated Wearable Systems: A Comprehensive Review
journal, January 2019


Active Materials for Organic Electrochemical Transistors
journal, July 2018


Functionalized Organic Thin Film Transistors for Biosensing
journal, January 2019


Organic Electrochemical Transistors for Clinical Applications
journal, September 2014

  • Leleux, Pierre; Rivnay, Jonathan; Lonjaret, Thomas
  • Advanced Healthcare Materials, Vol. 4, Issue 1
  • DOI: 10.1002/adhm.201400356

Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation
journal, January 2019


Patterning of Stretchable Organic Electrochemical Transistors
journal, March 2017


Controlling the mode of operation of organic transistors through side-chain engineering
journal, October 2016

  • Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 43
  • DOI: 10.1073/pnas.1608780113

Patterning Vertically Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors
journal, October 2018

  • Zhu, Bowen; Gong, Shu; Lin, Fenge
  • Advanced Electronic Materials, Vol. 5, Issue 1
  • DOI: 10.1002/aelm.201800509

Designing Polymeric Mixed Conductors and Their Application to Electrochemical‐Transistor‐Based Biosensors
journal, August 2020

  • Kim, Ji Hwan; Kim, Seong‐Min; Kim, Gunwoo
  • Macromolecular Bioscience, Vol. 20, Issue 11
  • DOI: 10.1002/mabi.202000211

Implantable bioelectronics toward long-term stability and sustainability
journal, April 2021


Steady-State and Transient Behavior of Organic Electrochemical Transistors
journal, October 2007

  • Bernards, D. A.; Malliaras, G. G.
  • Advanced Functional Materials, Vol. 17, Issue 17
  • DOI: 10.1002/adfm.200601239

Design and evaluation of conjugated polymers with polar side chains as electrode materials for electrochemical energy storage in aqueous electrolytes
journal, January 2019

  • Moia, Davide; Giovannitti, Alexander; Szumska, Anna A.
  • Energy & Environmental Science, Vol. 12, Issue 4
  • DOI: 10.1039/C8EE03518K

Laser-patterned metallic interconnections for all stretchable organic electrochemical transistors
journal, May 2018


Anisotropic Structure and Charge Transport in Highly Strain-Aligned Regioregular Poly(3-hexylthiophene)
journal, August 2011

  • O'Connor, Brendan; Kline, R. Joseph; Conrad, Brad R.
  • Advanced Functional Materials, Vol. 21, Issue 19
  • DOI: 10.1002/adfm.201100904

Benchmarking organic mixed conductors for transistors
journal, November 2017


Biological Applications of Organic Electrochemical Transistors: Electrochemical Biosensors and Electrophysiology Recording
journal, May 2019


Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors
journal, August 2016

  • Nielsen, Christian B.; Giovannitti, Alexander; Sbircea, Dan-Tiberiu
  • Journal of the American Chemical Society, Vol. 138, Issue 32
  • DOI: 10.1021/jacs.6b05280

Electronic dura mater for long-term multimodal neural interfaces
journal, January 2015


Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology
journal, March 2020

  • Cea, Claudia; Spyropoulos, George D.; Jastrzebska-Perfect, Patricia
  • Nature Materials, Vol. 19, Issue 6
  • DOI: 10.1038/s41563-020-0638-3

Tuning the Electromechanical Properties of PEDOT:PSS Films for Stretchable Transistors And Pressure Sensors
journal, April 2019

  • Zhang, Shiming; Li, Yang; Tomasello, Gaia
  • Advanced Electronic Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aelm.201900191

Organic Electrochemical Transistors as an Emerging Platform for Bio-Sensing Applications: A Review
journal, February 2021

  • Sophocleous, Marios; Contat-Rodrigo, Laura; Garcia-Breijo, Eduardo
  • IEEE Sensors Journal, Vol. 21, Issue 4
  • DOI: 10.1109/JSEN.2020.3033283

Highly stretchable PEDOT:PSS organic electrochemical transistors achieved via polyethylene glycol addition
journal, November 2019


Regiochemistry-Driven Organic Electrochemical Transistor Performance Enhancement in Ethylene Glycol-Functionalized Polythiophenes
journal, June 2021

  • Hallani, Rawad K.; Paulsen, Bryan D.; Petty, Anthony J.
  • Journal of the American Chemical Society, Vol. 143, Issue 29
  • DOI: 10.1021/jacs.1c03516

Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping
journal, October 2018

  • Lee, Wonryung; Kobayashi, Shingo; Nagase, Masase
  • Science Advances, Vol. 4, Issue 10
  • DOI: 10.1126/sciadv.aau2426

Enhancement‐Mode PEDOT:PSS Organic Electrochemical Transistors Using Molecular De‐Doping
journal, March 2020

  • Keene, Scott T.; Pol, Tom P. A.; Zakhidov, Dante
  • Advanced Materials, Vol. 32, Issue 19
  • DOI: 10.1002/adma.202000270