DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A high throughput optical method for studying compositional effects in electrocatalysts for CO2 reduction

Abstract

Abstract In the problem of electrochemical CO 2 reduction, the discovery of earth-abundant, efficient, and selective catalysts is essential to enabling technology that can contribute to a carbon-neutral energy cycle. In this study, we adapt an optical high throughput screening method to study multi-metallic catalysts for CO 2 electroreduction. We demonstrate the utility of the method by constructing catalytic activity maps of different alloyed elements and use X-ray scattering analysis by the atomic pair distribution function (PDF) method to gain insight into the structures of the most active compositions. Among combinations of four elements (Au, Ag, Cu, Zn), Au 6 Ag 2 Cu 2 and Au 4 Zn 3 Cu 3 were identified as the most active compositions in their respective ternaries. These ternary electrocatalysts were more active than any binary combination, and a ca. 5-fold increase in current density at potentials of −0.4 to −0.8 V vs. RHE was obtained for the best ternary catalysts relative to Au prepared by the same method. Tafel plots of electrochemical data for CO 2 reduction and hydrogen evolution indicate that the ternary catalysts, despite their higher surface area, are poorer catalysts for the hydrogen evolution reaction than pure Au. This results in highmore » Faradaic efficiency for CO 2 reduction to CO.« less

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ; ORCiD logo;
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
Sponsoring Org.:
USDOE; USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division; Canadian Institute for Advanced Research (CIFAR)
OSTI Identifier:
1766580
Alternate Identifier(s):
OSTI ID: 1772731
Report Number(s):
BNL-21187-2021-JAAM
Journal ID: ISSN 2041-1723; 1114; PII: 21342
Grant/Contract Number:  
SC-0019781; SC0012704; SC0019781
Resource Type:
Published Article
Journal Name:
Nature Communications
Additional Journal Information:
Journal Name: Nature Communications Journal Volume: 12 Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Electrocatalysis; Energy; Nanoparticles

Citation Formats

Hitt, Jeremy L., Li, Yuguang C., Tao, Songsheng, Yan, Zhifei, Gao, Yue, Billinge, Simon J. L., and Mallouk, Thomas E. A high throughput optical method for studying compositional effects in electrocatalysts for CO2 reduction. United Kingdom: N. p., 2021. Web. doi:10.1038/s41467-021-21342-w.
Hitt, Jeremy L., Li, Yuguang C., Tao, Songsheng, Yan, Zhifei, Gao, Yue, Billinge, Simon J. L., & Mallouk, Thomas E. A high throughput optical method for studying compositional effects in electrocatalysts for CO2 reduction. United Kingdom. https://doi.org/10.1038/s41467-021-21342-w
Hitt, Jeremy L., Li, Yuguang C., Tao, Songsheng, Yan, Zhifei, Gao, Yue, Billinge, Simon J. L., and Mallouk, Thomas E. Thu . "A high throughput optical method for studying compositional effects in electrocatalysts for CO2 reduction". United Kingdom. https://doi.org/10.1038/s41467-021-21342-w.
@article{osti_1766580,
title = {A high throughput optical method for studying compositional effects in electrocatalysts for CO2 reduction},
author = {Hitt, Jeremy L. and Li, Yuguang C. and Tao, Songsheng and Yan, Zhifei and Gao, Yue and Billinge, Simon J. L. and Mallouk, Thomas E.},
abstractNote = {Abstract In the problem of electrochemical CO 2 reduction, the discovery of earth-abundant, efficient, and selective catalysts is essential to enabling technology that can contribute to a carbon-neutral energy cycle. In this study, we adapt an optical high throughput screening method to study multi-metallic catalysts for CO 2 electroreduction. We demonstrate the utility of the method by constructing catalytic activity maps of different alloyed elements and use X-ray scattering analysis by the atomic pair distribution function (PDF) method to gain insight into the structures of the most active compositions. Among combinations of four elements (Au, Ag, Cu, Zn), Au 6 Ag 2 Cu 2 and Au 4 Zn 3 Cu 3 were identified as the most active compositions in their respective ternaries. These ternary electrocatalysts were more active than any binary combination, and a ca. 5-fold increase in current density at potentials of −0.4 to −0.8 V vs. RHE was obtained for the best ternary catalysts relative to Au prepared by the same method. Tafel plots of electrochemical data for CO 2 reduction and hydrogen evolution indicate that the ternary catalysts, despite their higher surface area, are poorer catalysts for the hydrogen evolution reaction than pure Au. This results in high Faradaic efficiency for CO 2 reduction to CO.},
doi = {10.1038/s41467-021-21342-w},
journal = {Nature Communications},
number = 1,
volume = 12,
place = {United Kingdom},
year = {Thu Feb 18 00:00:00 EST 2021},
month = {Thu Feb 18 00:00:00 EST 2021}
}

Works referenced in this record:

Understanding the Influence of [EMIM]Cl on the Suppression of the Hydrogen Evolution Reaction on Transition Metal Electrodes
journal, July 2017


Understanding of Strain Effects in the Electrochemical Reduction of CO 2 : Using Pd Nanostructures as an Ideal Platform
journal, February 2017


Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu–Pd Catalysts with Different Mixing Patterns
journal, December 2016

  • Ma, Sichao; Sadakiyo, Masaaki; Heima, Minako
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b10740

Kinetics of Electrochemical Reduction of Carbon Dioxide on a Gold Electrode in Phosphate Buffer Solutions
journal, July 1995

  • Noda, Hidetomo; Ikeda, Shoichiro; Yamamoto, Akio
  • Bulletin of the Chemical Society of Japan, Vol. 68, Issue 7
  • DOI: 10.1246/bcsj.68.1889

Bifunctional Interface of Au and Cu for Improved CO 2 Electroreduction
journal, August 2016

  • Back, Seoin; Kim, Jun-Hyuk; Kim, Yong-Tae
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 35
  • DOI: 10.1021/acsami.6b05903

Overpotentials and Faraday Efficiencies in CO 2 Electrocatalysis-the Impact of 1-Ethyl-3-Methylimidazolium Trifluoromethanesulfonate
journal, February 2016

  • Neubauer, Sebastian S.; Krause, Ralf K.; Schmid, Bernhard
  • Advanced Energy Materials, Vol. 6, Issue 9
  • DOI: 10.1002/aenm.201502231

Development of solar fuels photoanodes through combinatorial integration of Ni–La–Co–Ce oxide catalysts on BiVO 4
journal, January 2016

  • Guevarra, D.; Shinde, A.; Suram, S. K.
  • Energy & Environmental Science, Vol. 9, Issue 2
  • DOI: 10.1039/C5EE03488D

Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces
journal, August 2014

  • Kuhl, Kendra P.; Hatsukade, Toru; Cave, Etosha R.
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja505791r

Particle Size Effects in the Catalytic Electroreduction of CO 2 on Cu Nanoparticles
journal, May 2014

  • Reske, Rulle; Mistry, Hemma; Behafarid, Farzad
  • Journal of the American Chemical Society, Vol. 136, Issue 19
  • DOI: 10.1021/ja500328k

A selective and efficient electrocatalyst for carbon dioxide reduction
journal, January 2014

  • Lu, Qi; Rosen, Jonathan; Zhou, Yang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4242

Complex modeling: a strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems
journal, September 2015

  • Juhás, Pavol; Farrow, Christopher L.; Yang, Xiaohao
  • Acta Crystallographica Section A Foundations and Advances, Vol. 71, Issue 6, p. 562-568
  • DOI: 10.1107/S2053273315014473

A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni–Fe oxides containing a third metal
journal, January 2014

  • Gerken, James B.; Shaner, Sarah E.; Massé, Robert C.
  • Energy Environ. Sci., Vol. 7, Issue 7
  • DOI: 10.1039/C4EE00436A

How Doped MoS 2 Breaks Transition-Metal Scaling Relations for CO 2 Electrochemical Reduction
journal, June 2016


Pd−Ti and Pd−Co−Au Electrocatalysts as a Replacement for Platinum for Oxygen Reduction in Proton Exchange Membrane Fuel Cells
journal, September 2005

  • Fernández, José L.; Raghuveer, Vadari; Manthiram, Arumugam
  • Journal of the American Chemical Society, Vol. 127, Issue 38
  • DOI: 10.1021/ja0534710

Machine learning in materials informatics: recent applications and prospects
journal, December 2017

  • Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0056-5

Trends in the Exchange Current for Hydrogen Evolution
journal, January 2005

  • Nørskov, J. K.; Bligaard, T.; Logadottir, A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 3
  • DOI: 10.1149/1.1856988

Electrolysis of Gaseous CO 2 to CO in a Flow Cell with a Bipolar Membrane
journal, November 2017


Molecular enhancement of heterogeneous CO2 reduction
journal, February 2020


Understanding Surface-Mediated Electrochemical Reactions: CO 2 Reduction and Beyond
journal, July 2018


Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped BiVO 4 Photocatalysts by Scanning Electrochemical Microscopy
journal, June 2011

  • Ye, Heechang; Park, Hyun S.; Bard, Allen J.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 25
  • DOI: 10.1021/jp200852c

Design of a High Throughput 25-Well Parallel Electrolyzer for the Accelerated Discovery of CO2 Reduction Catalysts via a Combinatorial Approach
journal, September 2011


In Situ Spectroscopic Examination of a Low Overpotential Pathway for Carbon Dioxide Conversion to Carbon Monoxide
journal, July 2012

  • Rosen, Brian A.; Haan, John L.; Mukherjee, Prabuddha
  • The Journal of Physical Chemistry C, Vol. 116, Issue 29, p. 15307-15312
  • DOI: 10.1021/jp210542v

The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis
journal, May 2004


Size-Dependent Electrocatalytic Reduction of CO 2 over Pd Nanoparticles
journal, March 2015

  • Gao, Dunfeng; Zhou, Hu; Wang, Jing
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/jacs.5b00046

The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts
journal, May 2018

  • Zheng, Yao; Jiao, Yan; Vasileff, Anthony
  • Angewandte Chemie International Edition, Vol. 57, Issue 26
  • DOI: 10.1002/anie.201710556

Activity-Based Sensing Methods for Monitoring the Reactive Carbon Species Carbon Monoxide and Formaldehyde in Living Systems
journal, September 2019


Bifunctional alloys for the electroreduction of CO 2 and CO
journal, January 2016

  • Hansen, H. A.; Shi, C.; Lausche, A. C.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 13
  • DOI: 10.1039/C5CP07717F

The fast azimuthal integration Python library: pyFAI
journal, March 2015

  • Ashiotis, Giannis; Deschildre, Aurore; Nawaz, Zubair
  • Journal of Applied Crystallography, Vol. 48, Issue 2
  • DOI: 10.1107/S1600576715004306

High-Throughput Synthesis of Mixed-Metal Electrocatalysts for CO 2 Reduction
journal, February 2017

  • He, Jingfu; Dettelbach, Kevan E.; Salvatore, Danielle A.
  • Angewandte Chemie, Vol. 129, Issue 22
  • DOI: 10.1002/ange.201612038

Rapid-acquisition pair distribution function (RA-PDF) analysis
journal, November 2003

  • Chupas, Peter J.; Qiu, Xiangyun; Hanson, Jonathan C.
  • Journal of Applied Crystallography, Vol. 36, Issue 6, p. 1342-1347
  • DOI: 10.1107/S0021889803017564

Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO 2 Reduction to CO
journal, January 2013

  • Hansen, Heine A.; Varley, Joel B.; Peterson, Andrew A.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 3
  • DOI: 10.1021/jz3021155

Ionic Liquid-Mediated Selective Conversion of CO2 to CO at Low Overpotentials
journal, September 2011

  • Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.
  • Science, Vol. 334, Issue 6056, p. 643-644
  • DOI: 10.1126/science.1209786

Electrochemical Reduction of CO 2 at Functionalized Au Electrodes
journal, February 2017

  • Fang, Yuxin; Flake, John C.
  • Journal of the American Chemical Society, Vol. 139, Issue 9
  • DOI: 10.1021/jacs.6b11023

Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations
journal, October 2010

  • Skúlason, Egill; Tripkovic, Vladimir; Björketun, Mårten E.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 42
  • DOI: 10.1021/jp1048887

Development of Supported Bifunctional Electrocatalysts for Unitized Regenerative Fuel Cells
journal, January 2002

  • Chen, Guoying; Bare, Simon R.; Mallouk, Thomas E.
  • Journal of The Electrochemical Society, Vol. 149, Issue 8
  • DOI: 10.1149/1.1491237

Electric Field Effects in Electrochemical CO 2 Reduction
journal, September 2016


Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction
journal, January 2018


Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces
journal, July 2007


New Insights Into the Role of Imidazolium-Based Promoters for the Electroreduction of CO 2 on a Silver Electrode
journal, June 2016

  • Lau, Genevieve P. S.; Schreier, Marcel; Vasilyev, Dmitry
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b03366

CO 2 electrolysis to multicarbon products at activities greater than 1 A cm −2
journal, February 2020

  • García de Arquer, F. Pelayo; Dinh, Cao-Thang; Ozden, Adnan
  • Science, Vol. 367, Issue 6478
  • DOI: 10.1126/science.aay4217

Electrochemical CO 2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity
journal, October 2017

  • Clark, Ezra L.; Hahn, Christopher; Jaramillo, Thomas F.
  • Journal of the American Chemical Society, Vol. 139, Issue 44
  • DOI: 10.1021/jacs.7b08607

Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration
journal, August 2016


Activity Descriptors for CO 2 Electroreduction to Methane on Transition-Metal Catalysts
journal, January 2012

  • Peterson, Andrew A.; Nørskov, Jens K.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 2
  • DOI: 10.1021/jz201461p

Combinatorial discovery of new autoreduction catalysts for the CO2 reforming of methane
journal, February 2006


Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies
journal, March 2017

  • Green, M. L.; Choi, C. L.; Hattrick-Simpers, J. R.
  • Applied Physics Reviews, Vol. 4, Issue 1
  • DOI: 10.1063/1.4977487

Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene
journal, June 2016

  • Mistry, Hemma; Varela, Ana Sofia; Bonifacio, Cecile S.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12123

Alkalinity Initiated Decomposition of Mediating Imidazolium Ions in High Current Density CO 2 Electrolysis
journal, October 2016

  • Neubauer, Sebastian S.; Schmid, Bernhard; Reller, Christian
  • ChemElectroChem, Vol. 4, Issue 1
  • DOI: 10.1002/celc.201600461

Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles
journal, September 2014

  • Kim, Dohyung; Resasco, Joaquin; Yu, Yi
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5948

Electrolysis of CO 2 to Syngas in Bipolar Membrane-Based Electrochemical Cells
journal, November 2016


Combinatorial Synthesis of Gold-Based Thin Films for Improved Electrocatalytic Conversion of CO2 to CO
journal, February 2015


Understanding trends in electrochemical carbon dioxide reduction rates
journal, May 2017

  • Liu, Xinyan; Xiao, Jianping; Peng, Hongjie
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15438

Fluorescence-Based High Throughput Screening for Noble Metal-Free and Platinum-Poor Anode Catalysts for the Direct Methanol Fuel Cell
journal, August 2011

  • Welsch, F. G.; Stöwe, K.; Maier, W. F.
  • ACS Combinatorial Science, Vol. 13, Issue 5
  • DOI: 10.1021/co2000967

Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution
journal, September 2018


Aqueous CO 2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles
journal, November 2012

  • Chen, Yihong; Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja309317u

Evaluating Electrocatalysts for the Hydrogen Evolution Reaction Using Bipolar Electrode Arrays: Bi- and Trimetallic Combinations of Co, Fe, Ni, Mo, and W
journal, March 2014

  • Fosdick, Stephen E.; Berglund, Sean P.; Mullins, C. Buddie
  • ACS Catalysis, Vol. 4, Issue 5
  • DOI: 10.1021/cs500168t

Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction
journal, December 2016

  • Eilert, André; Cavalca, Filippo; Roberts, F. Sloan
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 1
  • DOI: 10.1021/acs.jpclett.6b02273