DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons

Abstract

Electrocatalytic reduction of CO2 to energy-rich hydrocarbons such as alkanes, alkenes, and alcohols is a very challenging task. So far, only copper has proven to be capable of such a conversion. Here, we report density functional theory (DFT) calculations combined with the Poisson-Boltzmann implicit solvation model to show that single-atom alloys (SAAs) are promising electrocatalysts for CO2 reduction to C 1 hydrocarbons in aqueous solution. The majority component of the SAAs studied is either gold or silver, in combination with isolated single atoms, M (M = Cu, Ni, Pd, Pt, Co, Rh, and Ir), replacing surface atoms. We envision that the SAA behaves as a one-pot tandem catalyst: first gold (or silver) reduces CO2 to CO, and the newly formed CO is then captured by M and is further reduced to C 1 hydrocarbons such as methane or methanol. We studied 28 SAAs, and found about half of them selectively favor the CO2 reduction reaction over the competing hydrogen evolution reaction. Most of those promising SAAs contain M = Co, Rh, or Ir. The reaction mechanism of two SAAs, Rh@Au(100) and Rh@Ag(100), is explored in detail. Both of them reduce CO2 to methane but via different pathways. For Rh@Au(100), reductionmore » occurs through the pathway *CO → *CHO → *CHOH → *CH + H2O(l) → *CH2 + H2O(l) → *CH3 + H2O(l) → * + H2O(l) + CH4(g); whereas, for Rh@Ag(100), the pathway is *CO → *CHO → *CH2O→ *OCH3 → *O + CH4(g) → *OH + CH4(g) →* + H2O(l) + CH4(g). The minimum applied voltages to drive the two electrocatalytic systems are -1.01 and -1.12 VRHE for Rh@Au(100) and Rh@Ag(100), respectively, at which the Faradaic efficiencies for CO2 reduction to CO are 60% for gold and 90% for silver. This suggests that SAA can efficiently reduce CO2 to methane with as small as 40% loss to the hydrogen evolution reaction for Rh@Au(100) and as small as 10% for Rh@Ag(100). Lastly, we hope these computational results can stimulate experimental efforts to explore the use of SAA to catalyze CO2 electrochemical reduction to hydrocarbons.« less

Authors:
 [1];  [2];  [3];  [2];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1377572
Grant/Contract Number:  
AC02-05CH11231; SC0004993
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 6; Journal Issue: 11; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; CO2 reduction; density functional theory; electrocatalysis; one-pot tandem catalyst; single-atom alloys

Citation Formats

Cheng, Mu-Jeng, Clark, Ezra L., Pham, Hieu H., Bell, Alexis T., and Head-Gordon, Martin. Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons. United States: N. p., 2016. Web. doi:10.1021/acscatal.6b01393.
Cheng, Mu-Jeng, Clark, Ezra L., Pham, Hieu H., Bell, Alexis T., & Head-Gordon, Martin. Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons. United States. https://doi.org/10.1021/acscatal.6b01393
Cheng, Mu-Jeng, Clark, Ezra L., Pham, Hieu H., Bell, Alexis T., and Head-Gordon, Martin. Fri . "Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons". United States. https://doi.org/10.1021/acscatal.6b01393. https://www.osti.gov/servlets/purl/1377572.
@article{osti_1377572,
title = {Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons},
author = {Cheng, Mu-Jeng and Clark, Ezra L. and Pham, Hieu H. and Bell, Alexis T. and Head-Gordon, Martin},
abstractNote = {Electrocatalytic reduction of CO2 to energy-rich hydrocarbons such as alkanes, alkenes, and alcohols is a very challenging task. So far, only copper has proven to be capable of such a conversion. Here, we report density functional theory (DFT) calculations combined with the Poisson-Boltzmann implicit solvation model to show that single-atom alloys (SAAs) are promising electrocatalysts for CO2 reduction to C 1 hydrocarbons in aqueous solution. The majority component of the SAAs studied is either gold or silver, in combination with isolated single atoms, M (M = Cu, Ni, Pd, Pt, Co, Rh, and Ir), replacing surface atoms. We envision that the SAA behaves as a one-pot tandem catalyst: first gold (or silver) reduces CO2 to CO, and the newly formed CO is then captured by M and is further reduced to C 1 hydrocarbons such as methane or methanol. We studied 28 SAAs, and found about half of them selectively favor the CO2 reduction reaction over the competing hydrogen evolution reaction. Most of those promising SAAs contain M = Co, Rh, or Ir. The reaction mechanism of two SAAs, Rh@Au(100) and Rh@Ag(100), is explored in detail. Both of them reduce CO2 to methane but via different pathways. For Rh@Au(100), reduction occurs through the pathway *CO → *CHO → *CHOH → *CH + H2O(l) → *CH2 + H2O(l) → *CH3 + H2O(l) → * + H2O(l) + CH4(g); whereas, for Rh@Ag(100), the pathway is *CO → *CHO → *CH2O→ *OCH3 → *O + CH4(g) → *OH + CH4(g) →* + H2O(l) + CH4(g). The minimum applied voltages to drive the two electrocatalytic systems are -1.01 and -1.12 VRHE for Rh@Au(100) and Rh@Ag(100), respectively, at which the Faradaic efficiencies for CO2 reduction to CO are 60% for gold and 90% for silver. This suggests that SAA can efficiently reduce CO2 to methane with as small as 40% loss to the hydrogen evolution reaction for Rh@Au(100) and as small as 10% for Rh@Ag(100). Lastly, we hope these computational results can stimulate experimental efforts to explore the use of SAA to catalyze CO2 electrochemical reduction to hydrocarbons.},
doi = {10.1021/acscatal.6b01393},
journal = {ACS Catalysis},
number = 11,
volume = 6,
place = {United States},
year = {Fri Sep 23 00:00:00 EDT 2016},
month = {Fri Sep 23 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 146 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds
journal, November 2010

  • Cook, Timothy R.; Dogutan, Dilek K.; Reece, Steven Y.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr100246c

Extinction risk from climate change
journal, January 2004

  • Thomas, Chris D.; Cameron, Alison; Green, Rhys E.
  • Nature, Vol. 427, Issue 6970
  • DOI: 10.1038/nature02121

Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation
journal, December 2009

  • Rakowski Dubois, M.; Dubois, Daniel L.
  • Accounts of Chemical Research, Vol. 42, Issue 12, p. 1974-1982
  • DOI: 10.1021/ar900110c

Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels
journal, December 2009

  • Morris, Amanda J.; Meyer, Gerald J.; Fujita, Etsuko
  • Accounts of Chemical Research, Vol. 42, Issue 12
  • DOI: 10.1021/ar9001679

Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO 2 Fixation
journal, June 2013

  • Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr300463y

Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes
journal, August 2015


A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
journal, January 2014

  • Qiao, Jinli; Liu, Yuyu; Hong, Feng
  • Chem. Soc. Rev., Vol. 43, Issue 2
  • DOI: 10.1039/C3CS60323G

Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
journal, April 2014

  • Li, Christina W.; Ciston, Jim; Kanan, Matthew W.
  • Nature, Vol. 508, Issue 7497
  • DOI: 10.1038/nature13249

Two Pathways for the Formation of Ethylene in CO Reduction on Single-Crystal Copper Electrodes
journal, June 2012

  • Schouten, Klaas Jan P.; Qin, Zisheng; Pérez Gallent, Elena
  • Journal of the American Chemical Society, Vol. 134, Issue 24
  • DOI: 10.1021/ja302668n

A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes
journal, January 2011

  • Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.
  • Chemical Science, Vol. 2, Issue 10
  • DOI: 10.1039/c1sc00277e

Generation of Cu–In alloy surfaces from CuInO 2 as selective catalytic sites for CO 2 electroreduction
journal, January 2015

  • Jedidi, Abdesslem; Rasul, Shahid; Masih, Dilshad
  • J. Mater. Chem. A, Vol. 3, Issue 37
  • DOI: 10.1039/C5TA05669A

A Highly Selective Copper-Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO 2 to CO
journal, December 2014

  • Rasul, Shahid; Anjum, Dalaver H.; Jedidi, Abdesslem
  • Angewandte Chemie International Edition, Vol. 54, Issue 7
  • DOI: 10.1002/anie.201410233

Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO 2 reduction by cobalt–terpyridine complexes
journal, January 2015

  • Elgrishi, Noémie; Chambers, Matthew B.; Fontecave, Marc
  • Chemical Science, Vol. 6, Issue 4
  • DOI: 10.1039/C4SC03766A

Competition between CO 2 Reduction and H 2 Evolution on Transition-Metal Electrocatalysts
journal, September 2014

  • Zhang, Yin-Jia; Sethuraman, Vijay; Michalsky, Ronald
  • ACS Catalysis, Vol. 4, Issue 10
  • DOI: 10.1021/cs5012298

CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films
journal, April 2012

  • Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 17, p. 7231-7234
  • DOI: 10.1021/ja3010978

Insights into the electrocatalytic reduction of CO 2 on metallic silver surfaces
journal, January 2014

  • Hatsukade, Toru; Kuhl, Kendra P.; Cave, Etosha R.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 27
  • DOI: 10.1039/C4CP00692E

Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles
journal, September 2014

  • Kim, Dohyung; Resasco, Joaquin; Yu, Yi
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5948

Tailoring Metal-Porphyrin-Like Active Sites on Graphene to Improve the Efficiency and Selectivity of Electrochemical CO 2 Reduction
journal, September 2015

  • Cheng, Mu-Jeng; Kwon, Youngkook; Head-Gordon, Martin
  • The Journal of Physical Chemistry C, Vol. 119, Issue 37
  • DOI: 10.1021/acs.jpcc.5b05518

Intermetallic Alloys as CO Electroreduction Catalysts—Role of Isolated Active Sites
journal, May 2014

  • Karamad, Mohammadreza; Tripkovic, Vladimir; Rossmeisl, Jan
  • ACS Catalysis, Vol. 4, Issue 7
  • DOI: 10.1021/cs500328c

Electrochemical CO 2 and CO Reduction on Metal-Functionalized Porphyrin-like Graphene
journal, April 2013

  • Tripkovic, Vladimir; Vanin, Marco; Karamad, Mohammedreza
  • The Journal of Physical Chemistry C, Vol. 117, Issue 18
  • DOI: 10.1021/jp306172k

Electrolysis of water on (oxidized) metal surfaces
journal, December 2005


Reverse Water–Gas Shift on Interfacial Sites Formed by Deposition of Oxidized Molybdenum Moieties onto Gold Nanoparticles
journal, August 2015

  • Carrasquillo-Flores, Ronald; Ro, Insoo; Kumbhalkar, Mrunmayi D.
  • Journal of the American Chemical Society, Vol. 137, Issue 32
  • DOI: 10.1021/jacs.5b05945

A selective and efficient electrocatalyst for carbon dioxide reduction
journal, January 2014

  • Lu, Qi; Rosen, Jonathan; Zhou, Yang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4242

Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO 2 reduction
journal, January 2015

  • Hahn, Christopher; Abram, David N.; Hansen, Heine A.
  • Journal of Materials Chemistry A, Vol. 3, Issue 40
  • DOI: 10.1039/C5TA04863J

Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media
journal, August 1994

  • Hori, Yoshio; Wakebe, Hidetoshi; Tsukamoto, Toshio
  • Electrochimica Acta, Vol. 39, Issue 11-12, p. 1833-1839
  • DOI: 10.1016/0013-4686(94)85172-7

Aqueous CO 2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles
journal, November 2012

  • Chen, Yihong; Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja309317u

Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO 2 to CO
journal, October 2013

  • Zhu, Wenlei; Michalsky, Ronald; Metin, Önder
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja409445p

Activity Descriptors for CO 2 Electroreduction to Methane on Transition-Metal Catalysts
journal, January 2012

  • Peterson, Andrew A.; Nørskov, Jens K.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 2
  • DOI: 10.1021/jz201461p

Atomic Scale Surface Structure of Pt/Cu(111) Surface Alloys
journal, January 2014

  • Lucci, Felicia R.; Lawton, Timothy J.; Pronschinske, Alex
  • The Journal of Physical Chemistry C, Vol. 118, Issue 6
  • DOI: 10.1021/jp405254z

H 2 Activation and Spillover on Catalytically Relevant Pt–Cu Single Atom Alloys
journal, August 2015

  • Lucci, Felicia R.; Marcinkowski, Matthew D.; Lawton, Timothy J.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 43
  • DOI: 10.1021/acs.jpcc.5b05562

Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene
journal, January 2014

  • Pei, Guang Xian; Liu, Xiao Yan; Wang, Aiqin
  • New Journal of Chemistry, Vol. 38, Issue 5
  • DOI: 10.1039/c3nj01136d

Ag Alloyed Pd Single-Atom Catalysts for Efficient Selective Hydrogenation of Acetylene to Ethylene in Excess Ethylene
journal, May 2015


Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit
journal, October 2015

  • Lucci, Felicia R.; Liu, Jilei; Marcinkowski, Matthew D.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9550

Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions
journal, January 2013

  • Boucher, Matthew B.; Zugic, Branko; Cladaras, George
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 29
  • DOI: 10.1039/c3cp51538a

Isolated Metal Atom Geometries as a Strategy for Selective Heterogeneous Hydrogenations
journal, March 2012

  • Kyriakou, Georgios; Boucher, Matthew B.; Jewell, April D.
  • Science, Vol. 335, Issue 6073
  • DOI: 10.1126/science.1215864

Efficient and Durable Au Alloyed Pd Single-Atom Catalyst for the Ullmann Reaction of Aryl Chlorides in Water
journal, April 2014

  • Zhang, Leilei; Wang, Aiqin; Miller, Jeffrey T.
  • ACS Catalysis, Vol. 4, Issue 5
  • DOI: 10.1021/cs500071c

Single Atom Hot-Spots at Au–Pd Nanoalloys for Electrocatalytic H 2 O 2 Production
journal, December 2011

  • Jirkovský, Jakub S.; Panas, Itai; Ahlberg, Elisabet
  • Journal of the American Chemical Society, Vol. 133, Issue 48
  • DOI: 10.1021/ja206477z

Single-Atom Alloy Pd–Ag Catalyst for Selective Hydrogenation of Acrolein
journal, July 2015

  • Aich, Payoli; Wei, Haojuan; Basan, Bridget
  • The Journal of Physical Chemistry C, Vol. 119, Issue 32
  • DOI: 10.1021/acs.jpcc.5b01357

Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
journal, March 1999


Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions
journal, February 2009

  • Blaylock, D. Wayne; Ogura, Teppei; Green, William H.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 12
  • DOI: 10.1021/jp806527q

How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
journal, January 2010

  • Peterson, Andrew A.; Abild-Pedersen, Frank; Studt, Felix
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/c0ee00071j

Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111)
journal, January 2016

  • Xiao, Hai; Cheng, Tao; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 138, Issue 2
  • DOI: 10.1021/jacs.5b11390

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Electrochemical Processing of Carbon Dioxide
journal, May 2008


Impacts of electrode potentials and solvents on the electroreduction of CO 2 : a comparison of theoretical approaches
journal, January 2015

  • Steinmann, Stephan N.; Michel, Carine; Schwiedernoch, Renate
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 21
  • DOI: 10.1039/C5CP00946D

Modeling the HCOOH/CO 2 Electrocatalytic Reaction: When Details Are Key
journal, June 2015

  • Steinmann, Stephan N.; Michel, Carine; Schwiedernoch, Renate
  • ChemPhysChem, Vol. 16, Issue 11
  • DOI: 10.1002/cphc.201500187

Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces
journal, July 2007


Microwave Synthesis of Classically Immiscible Rhodium–Silver and Rhodium–Gold Alloy Nanoparticles: Highly Active Hydrogenation Catalysts
journal, November 2014

  • García, Stephany; Zhang, Liang; Piburn, Graham W.
  • ACS Nano, Vol. 8, Issue 11
  • DOI: 10.1021/nn504746u

Selectivity of CO 2 Reduction on Copper Electrodes: The Role of the Kinetics of Elementary Steps
journal, January 2013

  • Nie, Xiaowa; Esopi, Monica R.; Janik, Michael J.
  • Angewandte Chemie International Edition, Vol. 52, Issue 9
  • DOI: 10.1002/anie.201208320

Selective Heterogeneous CO 2 Electroreduction to Methanol
journal, January 2015

  • Back, Seoin; Kim, Heejin; Jung, Yousung
  • ACS Catalysis, Vol. 5, Issue 2
  • DOI: 10.1021/cs501600x

Modeling CO2 reduction on Pt(111)
journal, January 2013

  • Shi, Chuan; O'Grady, Christopher P.; Peterson, Andrew A.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 19
  • DOI: 10.1039/c3cp50645b

Facet Dependence of CO 2 Reduction Paths on Cu Electrodes
journal, December 2015


Mechanistic Pathway in the Electrochemical Reduction of CO 2 on RuO 2
journal, June 2015

  • Karamad, Mohammadreza; Hansen, Heine A.; Rossmeisl, Jan
  • ACS Catalysis, Vol. 5, Issue 7
  • DOI: 10.1021/cs501542n

CO 2 Electrochemical Reduction to Methane and Methanol on Copper-Based Alloys: Theoretical Insight
journal, April 2015

  • Hirunsit, Pussana; Soodsawang, Wiwaporn; Limtrakul, Jumras
  • The Journal of Physical Chemistry C, Vol. 119, Issue 15
  • DOI: 10.1021/acs.jpcc.5b01574

Embedding Covalency into Metal Catalysts for Efficient Electrochemical Conversion of CO 2
journal, August 2014

  • Lim, Hyung-Kyu; Shin, Hyeyoung; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 136, Issue 32
  • DOI: 10.1021/ja503782w

Density functional theory study of carbon dioxide electrochemical reduction on the Fe(100) surface
journal, January 2014

  • Bernstein, Nicole J.; Akhade, Sneha A.; Janik, Michael J.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 27
  • DOI: 10.1039/C4CP00266K

Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces
journal, August 2014

  • Kuhl, Kendra P.; Hatsukade, Toru; Cave, Etosha R.
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja505791r

First-principles prediction of phase-segregating alloy phase diagrams and a rapid design estimate of their transition temperatures
journal, March 2007


MTDATA - thermodynamic and phase equilibrium software from the national physical laboratory
journal, June 2002


Aqueous room-temperature synthesis of Au–Rh, Au–Pt, Pt–Rh, and Pd–Rh alloy nanoparticles: fully tunable compositions within the miscibility gaps
journal, January 2011

  • Essinger-Hileman, Elizabeth R.; DeCicco, Danielle; Bondi, James F.
  • Journal of Materials Chemistry, Vol. 21, Issue 31
  • DOI: 10.1039/c0jm03913f

Hydrogen-Storage Properties of Solid-Solution Alloys of Immiscible Neighboring Elements with Pd
journal, November 2010

  • Kusada, Kohei; Yamauchi, Miho; Kobayashi, Hirokazu
  • Journal of the American Chemical Society, Vol. 132, Issue 45
  • DOI: 10.1021/ja107362z

Surface free energies of solid metals: Estimation from liquid surface tension measurements
journal, January 1977


The surface energy of metals
journal, August 1998


Density functional theory study of CO-induced segregation in gold-based alloys
journal, August 2014

  • Sansa, Myriam; Dhouib, Adnene; Guesmi, Hazar
  • The Journal of Chemical Physics, Vol. 141, Issue 6
  • DOI: 10.1063/1.4891869

Works referencing / citing this record:

Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals
journal, August 2019

  • Basdogan, Yasemin; Maldonado, Alex M.; Keith, John A.
  • WIREs Computational Molecular Science, Vol. 10, Issue 2
  • DOI: 10.1002/wcms.1446

Supported Single Atoms as New Class of Catalysts for Electrochemical Reduction of Carbon Dioxide
journal, February 2019


Surface Atomic Regulation of Core–Shell Noble Metal Catalysts
journal, January 2019

  • Ge, Jingjie; Li, Zhijun; Hong, Xun
  • Chemistry – A European Journal, Vol. 25, Issue 20
  • DOI: 10.1002/chem.201805332

Electrochemical CO 2 reduction: from nanoclusters to single atom catalysts
journal, January 2020

  • Lü, Fang; Bao, Haihong; Mi, Yuying
  • Sustainable Energy & Fuels, Vol. 4, Issue 3
  • DOI: 10.1039/c9se00776h

Carbon‐Rich Nonprecious Metal Single Atom Electrocatalysts for CO 2 Reduction and Hydrogen Evolution
journal, May 2019


Single-Atom Catalysts of Precious Metals for Electrochemical Reactions
journal, October 2017


Electrocatalytic Alloys for CO 2 Reduction
journal, December 2017


Enhanced catalytic activity of Au core Pd shell Pt cluster trimetallic nanorods for CO 2 reduction
journal, January 2019

  • He, Lan-qi; Yang, Hao; Huang, Jia-jun
  • RSC Advances, Vol. 9, Issue 18
  • DOI: 10.1039/c8ra10494h

Surface strategies for catalytic CO 2 reduction: from two-dimensional materials to nanoclusters to single atoms
journal, January 2019

  • Wang, Liming; Chen, Wenlong; Zhang, Doudou
  • Chemical Society Reviews, Vol. 48, Issue 21
  • DOI: 10.1039/c9cs00163h

Mechanistic study on Cu-catalyzed CO 2 electroreduction into CH 4 at simulated low overpotentials based on an improved electrochemical model
journal, January 2019

  • Ou, Lihui; Chen, Junxiang; Chen, Yuandao
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 28
  • DOI: 10.1039/c9cp02394a

Supported Noble‐Metal Single Atoms for Heterogeneous Catalysis
journal, July 2019

  • Li, Xuning; Yang, Xiaofeng; Huang, Yanqiang
  • Advanced Materials, Vol. 31, Issue 50
  • DOI: 10.1002/adma.201902031

Atomic‐Local Environments of Single‐Atom Catalysts: Synthesis, Electronic Structure, and Activity
journal, October 2019

  • Lai, Wei‐Hong; Miao, Zongcheng; Wang, Yun‐Xiao
  • Advanced Energy Materials, Vol. 9, Issue 43
  • DOI: 10.1002/aenm.201900722

Catalytic Mechanisms and Design Principles for Single‐Atom Catalysts in Highly Efficient CO 2 Conversion
journal, October 2019

  • Gong, Lele; Zhang, Detao; Lin, Chun‐Yu
  • Advanced Energy Materials, Vol. 9, Issue 44
  • DOI: 10.1002/aenm.201902625

Steric Hindrance in Sulfur Vacancy of Monolayer MoS 2 Boosts Electrochemical Reduction of Carbon Monoxide to Methane
journal, April 2018


Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products
journal, March 2019


Recent Progress in the Theoretical Investigation of Electrocatalytic Reduction of CO 2
journal, April 2018

  • Tian, Ziqi; Priest, Chad; Chen, Liang
  • Advanced Theory and Simulations, Vol. 1, Issue 5
  • DOI: 10.1002/adts.201800004

The Synergy of Dilute Pd and Surface Oxygen Species for Methane Upgrading on Au 3 Pd(111)
journal, September 2019


Developmental trends in CO 2 methanation using various catalysts
journal, January 2019

  • Sreedhar, I.; Varun, Yaddanapudi; Singh, Satyapaul A.
  • Catalysis Science & Technology, Vol. 9, Issue 17
  • DOI: 10.1039/c9cy01234f

Harnessing the Wisdom in Colloidal Chemistry to Make Stable Single-Atom Catalysts
journal, July 2018

  • Hülsey, Max J.; Zhang, Jiaguang; Yan, Ning
  • Advanced Materials, Vol. 30, Issue 47
  • DOI: 10.1002/adma.201802304

Heterogeneous single-atom catalysis
journal, May 2018


Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors
journal, November 2019


Influence of Coordination Environment of Anchored Single‐Site Cobalt Catalyst on CO 2 Hydrogenation
journal, December 2019


Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals
journal, March 2019


The Functionality of Surface Hydroxy Groups on the Selectivity and Activity of Carbon Dioxide Reduction over Cuprous Oxide in Aqueous Solutions
journal, May 2018

  • Yang, Piaoping; Zhao, Zhi-Jian; Chang, Xiaoxia
  • Angewandte Chemie International Edition, Vol. 57, Issue 26
  • DOI: 10.1002/anie.201801463

Living Atomically Dispersed Cu Ultrathin TiO 2 Nanosheet CO 2 Reduction Photocatalyst
journal, May 2019


Electrochemical reduction of CO 2 on graphene supported transition metals – towards single atom catalysts
journal, January 2017

  • He, Haiying; Jagvaral, Yesukhei
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 18
  • DOI: 10.1039/c7cp00915a

The Functionality of Surface Hydroxy Groups on the Selectivity and Activity of Carbon Dioxide Reduction over Cuprous Oxide in Aqueous Solutions
journal, May 2018

  • Yang, Piaoping; Zhao, Zhi-Jian; Chang, Xiaoxia
  • Angewandte Chemie, Vol. 130, Issue 26
  • DOI: 10.1002/ange.201801463