DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fe-N4O-C Nanoplates Covalently Bonding on Graphene for Efficient CO 2 Electroreduction and Zn-CO2 Batteries

Abstract

Electrochemical carbon dioxide (CO2) reduction into value-added products holds great promise in moving toward carbon neutrality but remains a grand challenge due to lack of efficient electrocatalysts. Herein, the nucleophilic substitution reaction is elaborately harnessed to synthesize carbon nanoplates with a Fe-N4O configuration anchored onto graphene substrate (Fe-N4O-C/Gr) through covalent linkages. Density functional theory calculations demonstrate the unique configuration of Fe-N4O with one oxygen (O) atom in the axial direction not only suppresses the competing hydrogen evolution reaction, but also facilitates the desorption of *CO intermediate compared with the commonly planar single-atomic Fe sites. The Fe-N4O-C/Gr shows excellent performance in the electroreduction of CO2 into carbon monoxide (CO) with an impressive Faradaic efficiency of 98.3% at -0.7 V versus reversible hydrogen electrode (RHE) and a high turnover frequency of 3511 h-1. Furthermore, as a cathode catalyst in an aqueous zinc (Zn)-CO2 battery, the Fe-N4O-C/Gr achieves a high CO Faradaic efficiency (≈91%) at a discharge current density of 3 mA cm-2 and long-term stability over 74 h. Here this work opens up a new route to simultaneously modulate the geometric and electronic structure of single-atomic catalysts toward efficient CO2 conversion.

Authors:
 [1];  [1];  [1];  [2];  [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Nankai University, Tianjin (China)
  2. Brookhaven National Laboratory (BNL), Upton, NY (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); National Natural Science Foundation of China (NSFC); Ministry of Science and Technology of China; Central Universities
OSTI Identifier:
1963587
Report Number(s):
BNL-224189-2023-JAAM
Journal ID: ISSN 1616-301X
Grant/Contract Number:  
SC0012704; 22105107; 2021YFA1201900; 020/C029201005
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 33; Journal Issue: 27; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Zn-CO2 battery; atomically dispersed Fe-N4O; axial coordinations; covalent interactions; electrochemical CO2 reductions

Citation Formats

Chen, Shan, Chen, Jialei, Li, Youzeng, Tan, Sha, Liao, Xuelong, Zhao, Tete, Zhang, Kai, Hu, Enyuan, Cheng, Fangyi, and Wang, Huan. Fe-N4O-C Nanoplates Covalently Bonding on Graphene for Efficient CO 2 Electroreduction and Zn-CO2 Batteries. United States: N. p., 2023. Web. doi:10.1002/adfm.202300801.
Chen, Shan, Chen, Jialei, Li, Youzeng, Tan, Sha, Liao, Xuelong, Zhao, Tete, Zhang, Kai, Hu, Enyuan, Cheng, Fangyi, & Wang, Huan. Fe-N4O-C Nanoplates Covalently Bonding on Graphene for Efficient CO 2 Electroreduction and Zn-CO2 Batteries. United States. https://doi.org/10.1002/adfm.202300801
Chen, Shan, Chen, Jialei, Li, Youzeng, Tan, Sha, Liao, Xuelong, Zhao, Tete, Zhang, Kai, Hu, Enyuan, Cheng, Fangyi, and Wang, Huan. Fri . "Fe-N4O-C Nanoplates Covalently Bonding on Graphene for Efficient CO 2 Electroreduction and Zn-CO2 Batteries". United States. https://doi.org/10.1002/adfm.202300801. https://www.osti.gov/servlets/purl/1963587.
@article{osti_1963587,
title = {Fe-N4O-C Nanoplates Covalently Bonding on Graphene for Efficient CO 2 Electroreduction and Zn-CO2 Batteries},
author = {Chen, Shan and Chen, Jialei and Li, Youzeng and Tan, Sha and Liao, Xuelong and Zhao, Tete and Zhang, Kai and Hu, Enyuan and Cheng, Fangyi and Wang, Huan},
abstractNote = {Electrochemical carbon dioxide (CO2) reduction into value-added products holds great promise in moving toward carbon neutrality but remains a grand challenge due to lack of efficient electrocatalysts. Herein, the nucleophilic substitution reaction is elaborately harnessed to synthesize carbon nanoplates with a Fe-N4O configuration anchored onto graphene substrate (Fe-N4O-C/Gr) through covalent linkages. Density functional theory calculations demonstrate the unique configuration of Fe-N4O with one oxygen (O) atom in the axial direction not only suppresses the competing hydrogen evolution reaction, but also facilitates the desorption of *CO intermediate compared with the commonly planar single-atomic Fe sites. The Fe-N4O-C/Gr shows excellent performance in the electroreduction of CO2 into carbon monoxide (CO) with an impressive Faradaic efficiency of 98.3% at -0.7 V versus reversible hydrogen electrode (RHE) and a high turnover frequency of 3511 h-1. Furthermore, as a cathode catalyst in an aqueous zinc (Zn)-CO2 battery, the Fe-N4O-C/Gr achieves a high CO Faradaic efficiency (≈91%) at a discharge current density of 3 mA cm-2 and long-term stability over 74 h. Here this work opens up a new route to simultaneously modulate the geometric and electronic structure of single-atomic catalysts toward efficient CO2 conversion.},
doi = {10.1002/adfm.202300801},
journal = {Advanced Functional Materials},
number = 27,
volume = 33,
place = {United States},
year = {Fri Mar 24 00:00:00 EDT 2023},
month = {Fri Mar 24 00:00:00 EDT 2023}
}

Works referenced in this record:

Targeted synthesis of a 2D ordered porous organic framework for drug release
journal, January 2011

  • Zhao, Huanyu; Jin, Zhao; Su, Hongmin
  • Chemical Communications, Vol. 47, Issue 22
  • DOI: 10.1039/c1cc00084e

Electroreduction of Carbon Dioxide Driven by the Intrinsic Defects in the Carbon Plane of a Single Fe–N 4 Site
journal, November 2020


Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities
journal, January 2020


Metal‐Triazolate‐Framework‐Derived FeN 4 Cl 1 Single‐Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction
journal, November 2021

  • Hu, Linyu; Dai, Chunlong; Chen, Liwei
  • Angewandte Chemie International Edition, Vol. 60, Issue 52
  • DOI: 10.1002/anie.202113895

Designing materials for electrochemical carbon dioxide recycling
journal, July 2019


Two‐Dimensional Conjugated Aromatic Networks as High‐Site‐Density and Single‐Atom Electrocatalysts for the Oxygen Reduction Reaction
journal, September 2019

  • Yang, Shaoxuan; Yu, Yihuan; Dou, Meiling
  • Angewandte Chemie International Edition, Vol. 58, Issue 41
  • DOI: 10.1002/anie.201908023

Activation of Ni Particles into Single Ni–N Atoms for Efficient Electrochemical Reduction of CO 2
journal, December 2019

  • Fan, Qun; Hou, Pengfei; Choi, Changhyeok
  • Advanced Energy Materials, Vol. 10, Issue 5
  • DOI: 10.1002/aenm.201903068

Ultralight covalent organic framework/graphene aerogels with hierarchical porosity
journal, September 2020


Isolated Diatomic Ni-Fe Metal-Nitrogen Sites for Synergistic Electroreduction of CO 2
journal, April 2019

  • Ren, Wenhao; Tan, Xin; Yang, Wanfeng
  • Angewandte Chemie International Edition, Vol. 58, Issue 21
  • DOI: 10.1002/anie.201901575

Cobalt, Nitrogen-Doped Porous Carbon Nanosheet-Assembled Flowers from Metal-Coordinated Covalent Organic Polymers for Efficient Oxygen Reduction
journal, December 2018

  • Chen, Shan; Zheng, Yong; Zhang, Bing
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 1
  • DOI: 10.1021/acsami.8b16920

Reversible Aqueous Zinc-CO 2 Batteries Based on CO 2 -HCOOH Interconversion
journal, November 2018

  • Xie, Jiafang; Wang, Xueyuan; Lv, Jiangquan
  • Angewandte Chemie International Edition, Vol. 57, Issue 52
  • DOI: 10.1002/anie.201811853

General Techno-Economic Analysis of CO 2 Electrolysis Systems
journal, February 2018

  • Jouny, Matthew; Luc, Wesley; Jiao, Feng
  • Industrial & Engineering Chemistry Research, Vol. 57, Issue 6
  • DOI: 10.1021/acs.iecr.7b03514

NiSn Atomic Pair on an Integrated Electrode for Synergistic Electrocatalytic CO 2 Reduction
journal, February 2021

  • Xie, Wenfu; Li, Hao; Cui, Guoqing
  • Angewandte Chemie International Edition, Vol. 60, Issue 13
  • DOI: 10.1002/anie.202014655

Rational Fabrication of Low‐Coordinate Single‐Atom Ni Electrocatalysts by MOFs for Highly Selective CO 2 Reduction
journal, February 2021

  • Zhang, Yan; Jiao, Long; Yang, Weijie
  • Angewandte Chemie International Edition, Vol. 60, Issue 14
  • DOI: 10.1002/anie.202016219

Atomically Dispersed s‐Block Magnesium Sites for Electroreduction of CO 2 to CO
journal, October 2021

  • Wang, Qiyou; Liu, Kang; Fu, Junwei
  • Angewandte Chemie International Edition, Vol. 60, Issue 48
  • DOI: 10.1002/anie.202109329

Graphene-based composites
journal, January 2012

  • Huang, Xiao; Qi, Xiaoying; Boey, Freddy
  • Chem. Soc. Rev., Vol. 41, Issue 2
  • DOI: 10.1039/C1CS15078B

Facile Top-Down Strategy for Direct Metal Atomization and Coordination Achieving a High Turnover Number in CO 2 Photoreduction
journal, October 2020

  • Li, Yunxiang; Wang, Shengyao; Wang, Xu-sheng
  • Journal of the American Chemical Society, Vol. 142, Issue 45
  • DOI: 10.1021/jacs.0c09060

Theoretical insights into single-atom catalysts
journal, January 2020

  • Li, Lulu; Chang, Xin; Lin, Xiaoyun
  • Chemical Society Reviews, Vol. 49, Issue 22
  • DOI: 10.1039/D0CS00795A

Metal–Nitrogen–Carbon Catalysts of Specifically Coordinated Configurations toward Typical Electrochemical Redox Reactions
journal, July 2021


Chemical Synthesis of Single Atomic Site Catalysts
journal, April 2020


Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction
journal, February 2022


Edge-located Fe-N4 sites on porous Graphene-like nanosheets for boosting CO2 electroreduction
journal, March 2022


Hierarchical Cross‐Linked Carbon Aerogels with Transition Metal‐Nitrogen Sites for Highly Efficient Industrial‐Level CO 2 Electroreduction
journal, August 2021

  • Zhang, Yikai; Wang, Xinyue; Zheng, Sixing
  • Advanced Functional Materials, Vol. 31, Issue 45
  • DOI: 10.1002/adfm.202104377

A Graphene‐Supported Single‐Atom FeN 5 Catalytic Site for Efficient Electrochemical CO 2 Reduction
journal, October 2019

  • Zhang, Huinian; Li, Jing; Xi, Shibo
  • Angewandte Chemie International Edition, Vol. 58, Issue 42
  • DOI: 10.1002/anie.201906079

Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction
journal, November 2018


Metal−Organic Coordination Interactions in Fe−Terephthalic Acid Networks on Cu(100)
journal, February 2008

  • Tait, Steven L.; Wang, Yeliang; Costantini, Giovanni
  • Journal of the American Chemical Society, Vol. 130, Issue 6
  • DOI: 10.1021/ja0778186

Site‐Specific Axial Oxygen Coordinated FeN 4 Active Sites for Highly Selective Electroreduction of Carbon Dioxide
journal, January 2022

  • Zhang, Ting; Han, Xu; Liu, Hong
  • Advanced Functional Materials, Vol. 32, Issue 18
  • DOI: 10.1002/adfm.202111446

Atomically Defined Undercoordinated Active Sites for Highly Efficient CO 2 Electroreduction
journal, November 2019

  • Zheng, Wanzhen; Yang, Jian; Chen, Hengquan
  • Advanced Functional Materials, Vol. 30, Issue 4
  • DOI: 10.1002/adfm.201907658

Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution
journal, July 2021


Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction
journal, June 2020


Non-Bonding Interaction of Neighboring Fe and Ni Single-Atom Pairs on MOF-Derived N-Doped Carbon for Enhanced CO 2 Electroreduction
journal, November 2021

  • Jiao, Long; Zhu, Juntong; Zhang, Yan
  • Journal of the American Chemical Society, Vol. 143, Issue 46
  • DOI: 10.1021/jacs.1c08050

Fe 1 N 4 –O 1 site with axial Fe–O coordination for highly selective CO 2 reduction over a wide potential range
journal, January 2021

  • Chen, Zhiqiang; Huang, Aijian; Yu, Ke
  • Energy & Environmental Science, Vol. 14, Issue 6
  • DOI: 10.1039/D1EE00569C

Precisely Constructing Orbital Coupling-Modulated Dual-Atom Fe Pair Sites for Synergistic CO 2 Electroreduction
journal, January 2022


Advances and Challenges for the Electrochemical Reduction of CO 2 to CO: From Fundamentals to Industrialization
journal, May 2021

  • Jin, Song; Hao, Zhimeng; Zhang, Kai
  • Angewandte Chemie International Edition, Vol. 60, Issue 38
  • DOI: 10.1002/anie.202101818

Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene
journal, August 2018


Mediating heterogenized nickel phthalocyanine into isolated Ni-N3 moiety for improving activity and stability of electrocatalytic CO2 reduction
journal, December 2022


Hierarchically mesoporous carbon spheres coated with a single atomic Fe–N–C layer for balancing activity and mass transfer in fuel cells
journal, August 2021

  • Shu, Chengyong; Tan, Qiang; Deng, Chengwei
  • Carbon Energy, Vol. 4, Issue 1
  • DOI: 10.1002/cey2.136

Progress and Perspectives of Electrochemical CO 2 Reduction on Copper in Aqueous Electrolyte
journal, April 2019