DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlled Nucleation and Stabilization of Ferroelectric Domain Wall Patterns in Epitaxial (110) Bismuth Ferrite Heterostructures

Abstract

Abstract Ferroelectric domain walls, topological entities separating domains of uniform polarization, are promising candidates as active elements for nanoscale memories. In such applications, controlled nucleation and stabilization of domain walls are critical. Here, using in situ transmission electron microscopy and phase‐field simulations, a controlled nucleation of vertically oriented 109° domain walls in (110)‐oriented BiFeO 3 (BFO) thin films is reported. In the switching experiment, reversed domains that are nucleated preferentially at the nanoscale edges of the “crest and sag” pattern‐like electrode under external bias subsequently grow into a stable stripe configuration. In addition, when triangular pockets (with an in‐plane polarization component) are present, these domain walls are pinned to form stable flux‐closure domains. Phase field simulations show that i) field enhancement at the edges of the electrode causes site‐specific domain nucleation, and ii) the local electrostatics at the domain walls drives the formation of flux closure domains, thus stabilizing the striped pattern, irrespective of the initial configuration. The results demonstrate how flux closure pinning can be exploited in conjunction with electrode patterning and substrate orientation to achieve a desired topological defect configuration. These insights constitute critical advancements in exploiting domain walls in next generation ferroelectronic devices.

Authors:
 [1];  [2];  [3];  [2];  [3];  [4]; ORCiD logo [4]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States); Univ. of New South Wales, Sydney, NSW (Australia)
  2. Pennsylvania State Univ., University Park, PA (United States)
  3. Univ. of New South Wales, Sydney, NSW (Australia)
  4. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; Australian Research Council (ARC); Australian Government; National Science Foundation (NSF); USDOE
OSTI Identifier:
1670671
Alternate Identifier(s):
OSTI ID: 1724258
Report Number(s):
BNL-219925-2020-JAAM
Journal ID: ISSN 1616-301X; TRN: US2203869
Grant/Contract Number:  
SC0012704; CE170100039; DMR‐1420620; DMR‐1744213
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 48; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; domain walls; interface engineering; orientation; flux closure; in-situ TEM

Citation Formats

Zhang, Yangyang, Tan, Yueze, Sando, Daniel, Chen, Long‐Qing, Valanoor, Nagarajan, Zhu, Yimei, and Han, Myung‐Geun. Controlled Nucleation and Stabilization of Ferroelectric Domain Wall Patterns in Epitaxial (110) Bismuth Ferrite Heterostructures. United States: N. p., 2020. Web. doi:10.1002/adfm.202003571.
Zhang, Yangyang, Tan, Yueze, Sando, Daniel, Chen, Long‐Qing, Valanoor, Nagarajan, Zhu, Yimei, & Han, Myung‐Geun. Controlled Nucleation and Stabilization of Ferroelectric Domain Wall Patterns in Epitaxial (110) Bismuth Ferrite Heterostructures. United States. https://doi.org/10.1002/adfm.202003571
Zhang, Yangyang, Tan, Yueze, Sando, Daniel, Chen, Long‐Qing, Valanoor, Nagarajan, Zhu, Yimei, and Han, Myung‐Geun. Wed . "Controlled Nucleation and Stabilization of Ferroelectric Domain Wall Patterns in Epitaxial (110) Bismuth Ferrite Heterostructures". United States. https://doi.org/10.1002/adfm.202003571. https://www.osti.gov/servlets/purl/1670671.
@article{osti_1670671,
title = {Controlled Nucleation and Stabilization of Ferroelectric Domain Wall Patterns in Epitaxial (110) Bismuth Ferrite Heterostructures},
author = {Zhang, Yangyang and Tan, Yueze and Sando, Daniel and Chen, Long‐Qing and Valanoor, Nagarajan and Zhu, Yimei and Han, Myung‐Geun},
abstractNote = {Abstract Ferroelectric domain walls, topological entities separating domains of uniform polarization, are promising candidates as active elements for nanoscale memories. In such applications, controlled nucleation and stabilization of domain walls are critical. Here, using in situ transmission electron microscopy and phase‐field simulations, a controlled nucleation of vertically oriented 109° domain walls in (110)‐oriented BiFeO 3 (BFO) thin films is reported. In the switching experiment, reversed domains that are nucleated preferentially at the nanoscale edges of the “crest and sag” pattern‐like electrode under external bias subsequently grow into a stable stripe configuration. In addition, when triangular pockets (with an in‐plane polarization component) are present, these domain walls are pinned to form stable flux‐closure domains. Phase field simulations show that i) field enhancement at the edges of the electrode causes site‐specific domain nucleation, and ii) the local electrostatics at the domain walls drives the formation of flux closure domains, thus stabilizing the striped pattern, irrespective of the initial configuration. The results demonstrate how flux closure pinning can be exploited in conjunction with electrode patterning and substrate orientation to achieve a desired topological defect configuration. These insights constitute critical advancements in exploiting domain walls in next generation ferroelectronic devices.},
doi = {10.1002/adfm.202003571},
journal = {Advanced Functional Materials},
number = 48,
volume = 30,
place = {United States},
year = {Wed Sep 16 00:00:00 EDT 2020},
month = {Wed Sep 16 00:00:00 EDT 2020}
}

Works referenced in this record:

Electron Optical Studies of Barium Titanate Single Crystal Films
journal, June 1964

  • Tanaka, Michiyoshi; Honjo, Goro
  • Journal of the Physical Society of Japan, Vol. 19, Issue 6
  • DOI: 10.1143/JPSJ.19.954

Electrode geometries for periodic poling of ferroelectric materials
journal, January 1998


BiFeO 3 epitaxial thin films and devices: past, present and future
journal, October 2014


Planar electrode piezoelectric force microscopy to study electric polarization switching in BiFeO3
journal, May 2007

  • Shafer, P.; Zavaliche, F.; Chu, Y. -H.
  • Applied Physics Letters, Vol. 90, Issue 20
  • DOI: 10.1063/1.2741046

Reliable polarization switching of BiFeO 3
journal, October 2012

  • Baek, S. H.; Eom, C. B.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 370, Issue 1977
  • DOI: 10.1098/rsta.2012.0197

Coupling of bias-induced crystallographic shear planes with charged domain walls in ferroelectric oxide thin films
journal, September 2016


Intrinsic Conductance of Domain Walls in BiFeO 3
journal, June 2019


Ferroelastic domain switching dynamics under electrical and mechanical excitations
journal, May 2014

  • Gao, Peng; Britson, Jason; Nelson, Christopher T.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4801

Strain Control of Domain-Wall Stability in Epitaxial BiFeO 3 (110) Films
journal, November 2007


Thin-film ferroelectric materials and their applications
journal, November 2016


Atomic-scale mechanisms of ferroelastic domain-wall-mediated ferroelectric switching
journal, November 2013

  • Gao, Peng; Britson, Jason; Jokisaari, Jacob R.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3791

Conduction at domain walls in oxide multiferroics
journal, January 2009

  • Seidel, J.; Martin, L. W.; He, Q.
  • Nature Materials, Vol. 8, Issue 3
  • DOI: 10.1038/nmat2373

Anisotropic conductance at improper ferroelectric domain walls
journal, February 2012

  • Meier, D.; Seidel, J.; Cano, A.
  • Nature Materials, Vol. 11, Issue 4
  • DOI: 10.1038/nmat3249

Deterministic Ferroelastic Domain Switching Using Ferroelectric Bilayers
journal, July 2019


Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories
journal, November 2017

  • Jiang, Jun; Bai, Zi Long; Chen, Zhi Hui
  • Nature Materials, Vol. 17, Issue 1
  • DOI: 10.1038/nmat5028

Large Scale Two-Dimensional Flux-Closure Domain Arrays in Oxide Multilayers and Their Controlled Growth
journal, November 2017


Domain Control in Multiferroic BiFeO3 through Substrate Vicinality
journal, September 2007

  • Chu, Y.-H.; Cruz, M. P.; Yang, C.-H.
  • Advanced Materials, Vol. 19, Issue 18, p. 2662-2666
  • DOI: 10.1002/adma.200602972

Direct Observation of Capacitor Switching Using Planar Electrodes
journal, August 2010

  • Balke, Nina; Gajek, Martin; Tagantsev, Alexander K.
  • Advanced Functional Materials, Vol. 20, Issue 20
  • DOI: 10.1002/adfm.201000475

Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films
journal, December 2007

  • Jia, Chun-Lin; Mi, Shao-Bo; Urban, Knut
  • Nature Materials, Vol. 7, Issue 1
  • DOI: 10.1038/nmat2080

Rhombohedral–Orthorhombic Ferroelectric Morphotropic Phase Boundary Associated with a Polar Vortex in BiFeO 3 Films
journal, October 2018


Domain walls of ferroelectric BaTiO 3 within the Ginzburg-Landau-Devonshire phenomenological model
journal, April 2010


Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films
journal, January 2002


Domain Dynamics During Ferroelectric Switching
journal, November 2011


Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3
journal, March 2011


Spontaneous Vortex Nanodomain Arrays at Ferroelectric Heterointerfaces
journal, February 2011

  • Nelson, Christopher T.; Winchester, Benjamin; Zhang, Yi
  • Nano Letters, Vol. 11, Issue 2
  • DOI: 10.1021/nl1041808

Harnessing ferroelectric domains for negative capacitance
journal, February 2019


Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals
journal, January 2015

  • Oh, Yoon Seok; Luo, Xuan; Huang, Fei-Ting
  • Nature Materials, Vol. 14, Issue 4
  • DOI: 10.1038/nmat4168

Towards a magnetoelectric memory
journal, June 2008

  • Bibes, Manuel; Barthélémy, Agnès
  • Nature Materials, Vol. 7, Issue 6
  • DOI: 10.1038/nmat2189

Expansion of the spin cycloid in multiferroic BiFeO3 thin films
journal, April 2019


Suppression of creep-regime dynamics in epitaxial ferroelectric BiFeO3 films
journal, May 2015

  • Shin, Y. J.; Jeon, B. C.; Yang, S. M.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10485

Orientation-dependent structural phase diagrams and dielectric properties of PbZr 1 x Ti x O 3 polydomain thin films
journal, April 2015


Neuromorphic computing using non-volatile memory
journal, October 2016


Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors
journal, July 2003

  • Gruverman, A.; Rodriguez, B. J.; Kingon, A. I.
  • Applied Physics Letters, Vol. 83, Issue 4
  • DOI: 10.1063/1.1593830

Geometric shadowing from rippled Sr Ru O 3 Sr Ti O 3 surface templates induces self-organization of epitaxial Sr Zr O 3 nanowires
journal, November 2006


Conduction through 71° Domain Walls in BiFeO 3 Thin Films
journal, September 2011


Low-frequency superelasticity and nonlinear elastic behavior of SrTiO 3 crystals
journal, January 2000


Ab initio study of ferroelectric domain walls in PbTiO 3
journal, March 2002


Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide
journal, November 2014

  • Farokhipoor, S.; Magén, C.; Venkatesan, S.
  • Nature, Vol. 515, Issue 7527
  • DOI: 10.1038/nature13918

Computer simulation of ferroelectric domain structures in epitaxial BiFeO3 thin films
journal, May 2008

  • Zhang, J. X.; Li, Y. L.; Choudhury, S.
  • Journal of Applied Physics, Vol. 103, Issue 9
  • DOI: 10.1063/1.2927385

Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects
journal, November 2016

  • Rojac, Tadej; Bencan, Andreja; Drazic, Goran
  • Nature Materials, Vol. 16, Issue 3
  • DOI: 10.1038/nmat4799

Interface-induced phenomena in polarization response of ferroelectric thin films
journal, September 2006

  • Tagantsev, A. K.; Gerra, G.
  • Journal of Applied Physics, Vol. 100, Issue 5
  • DOI: 10.1063/1.2337009

Domain wall nanoelectronics
journal, February 2012


SrZrO 3 Nanopatterning Using Self-Organized SrRuO 3 as a Template
journal, February 2005


Electrical half-wave rectification at ferroelectric domain walls
journal, September 2018

  • Schaab, Jakob; Skjærvø, Sandra H.; Krohns, Stephan
  • Nature Nanotechnology, Vol. 13, Issue 11
  • DOI: 10.1038/s41565-018-0253-5

Nonvolatile ferroelectric domain wall memory
journal, June 2017


Unexpected Giant Microwave Conductivity in a Nominally Silent BiFeO 3 Domain Wall
journal, January 2020


Conformational Domain Wall Switch
journal, February 2019

  • Sharma, Pankaj; Sando, Daniel; Zhang, Qi
  • Advanced Functional Materials, Vol. 29, Issue 18
  • DOI: 10.1002/adfm.201807523

Giant Resistive Switching via Control of Ferroelectric Charged Domain Walls
journal, May 2016

  • Li, Linze; Britson, Jason; Jokisaari, Jacob R.
  • Advanced Materials, Vol. 28, Issue 31
  • DOI: 10.1002/adma.201600160

Magnetic Domain-Wall Racetrack Memory
journal, April 2008


Static negative capacitance of a ferroelectric nano-domain nucleus
journal, October 2017

  • Sluka, Tomas; Mokry, Pavel; Setter, Nava
  • Applied Physics Letters, Vol. 111, Issue 15
  • DOI: 10.1063/1.4989391

Sheet superconductivity in twin walls: experimental evidence of
journal, June 1998


Deterministic control of ferroelastic switching in multiferroic materials
journal, October 2009

  • Balke, N.; Choudhury, S.; Jesse, S.
  • Nature Nanotechnology, Vol. 4, Issue 12, p. 868-875
  • DOI: 10.1038/nnano.2009.293

Designer defect stabilization of the super tetragonal phase in >70-nm-thick BiFeO 3 films on LaAlO 3 substrates
journal, June 2018

  • Sando, Daniel; Young, Thomas; Bulanadi, Ralph
  • Japanese Journal of Applied Physics, Vol. 57, Issue 9
  • DOI: 10.7567/JJAP.57.0902B2