DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Needle-Like Ferroelastic Domains in Individual Ferroelectric Nanoparticles

Abstract

Superior structural, physical and electronic properties make ferroelectric nanocrystals essential in enabling a range of next-generation devices. Ferroelectric responses are determined by crystal structure and domain morphology. The ability to reversibly displace, create and annihilate elastic domains is critical to device applications. Whereas electric-field control has been demonstrated for ferroelectric 180° surface domain walls and vortices, similar control of ferroelastic domains and domain boundaries within individual nanocrystals remains challenging. Using controlled external compressive and tensile axial stress, deterministic and reversible control of highly mobile ferroelastic domains and axial polarization in three dimensions is demonstrated in this study. While many studies exist on ferroelastic domains in thin films and bulk, little is known about ferroelastic interactions at the single nanoparticle level, especially involving domain boundaries. Through combining Bragg coherent X-ray diffractive imaging and Landau theory, strain gradients in individual BaTiO3 nanocrystals are shown to stabilize needle-like ferroelastic twin domains. These domains are highly labile under applied axial stress, producing a locally enhanced electric polarization mediated by a ferroelectric phase transition. The efficacy of Bragg coherent X-ray diffractive imaging in studying in operando domains in three-dimensions is demonstrated, while synergy with theory provides a paradigm for domain boundary engineering and potential formore » nanoscale functional devices.« less

Authors:
 [1];  [2];  [3];  [4];  [1]; ORCiD logo [5]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Rensselaer Polytechnic Inst., Troy, NY (United States)
  3. Paul Scherrer Inst. (PSI), Villigen (Switzerland). Swiss Light Source
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rensselaer Polytechnic Inst., Troy, NY (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Laboratory Directed Research and Development (LDRD) Program; US Air Force Office of Scientific Research (AFOSR)
OSTI Identifier:
1657227
Alternate Identifier(s):
OSTI ID: 1603708
Grant/Contract Number:  
AC02-06CH11357; FA9550-14-1-0363; 257827
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Electronic Materials
Additional Journal Information:
Journal Volume: 6; Journal Issue: 5; Journal ID: ISSN 2199-160X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; axial stress; barium titanate; diffractive imaging; domain boundaries; ferroelastic domains

Citation Formats

Liu, Zhen, Schold, Elijah, Karpov, Dmitry, Harder, Ross, Lookman, Turab, and Fohtung, Edwin. Needle-Like Ferroelastic Domains in Individual Ferroelectric Nanoparticles. United States: N. p., 2020. Web. doi:10.1002/aelm.201901300.
Liu, Zhen, Schold, Elijah, Karpov, Dmitry, Harder, Ross, Lookman, Turab, & Fohtung, Edwin. Needle-Like Ferroelastic Domains in Individual Ferroelectric Nanoparticles. United States. https://doi.org/10.1002/aelm.201901300
Liu, Zhen, Schold, Elijah, Karpov, Dmitry, Harder, Ross, Lookman, Turab, and Fohtung, Edwin. Mon . "Needle-Like Ferroelastic Domains in Individual Ferroelectric Nanoparticles". United States. https://doi.org/10.1002/aelm.201901300. https://www.osti.gov/servlets/purl/1657227.
@article{osti_1657227,
title = {Needle-Like Ferroelastic Domains in Individual Ferroelectric Nanoparticles},
author = {Liu, Zhen and Schold, Elijah and Karpov, Dmitry and Harder, Ross and Lookman, Turab and Fohtung, Edwin},
abstractNote = {Superior structural, physical and electronic properties make ferroelectric nanocrystals essential in enabling a range of next-generation devices. Ferroelectric responses are determined by crystal structure and domain morphology. The ability to reversibly displace, create and annihilate elastic domains is critical to device applications. Whereas electric-field control has been demonstrated for ferroelectric 180° surface domain walls and vortices, similar control of ferroelastic domains and domain boundaries within individual nanocrystals remains challenging. Using controlled external compressive and tensile axial stress, deterministic and reversible control of highly mobile ferroelastic domains and axial polarization in three dimensions is demonstrated in this study. While many studies exist on ferroelastic domains in thin films and bulk, little is known about ferroelastic interactions at the single nanoparticle level, especially involving domain boundaries. Through combining Bragg coherent X-ray diffractive imaging and Landau theory, strain gradients in individual BaTiO3 nanocrystals are shown to stabilize needle-like ferroelastic twin domains. These domains are highly labile under applied axial stress, producing a locally enhanced electric polarization mediated by a ferroelectric phase transition. The efficacy of Bragg coherent X-ray diffractive imaging in studying in operando domains in three-dimensions is demonstrated, while synergy with theory provides a paradigm for domain boundary engineering and potential for nanoscale functional devices.},
doi = {10.1002/aelm.201901300},
journal = {Advanced Electronic Materials},
number = 5,
volume = 6,
place = {United States},
year = {Mon Mar 09 00:00:00 EDT 2020},
month = {Mon Mar 09 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Enhanced Energy Storage with Polar Vortices in Ferroelectric Nanocomposites
journal, September 2017


Ferroelastic phase transitions: structure and microstructure
journal, December 2004

  • Salje, Ekhard K. H.; Hayward, Stuart A.; Lee, William T.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 61, Issue 1
  • DOI: 10.1107/S0108767304020318

Coherent X-ray diffraction imaging of strain at the nanoscale
journal, April 2009

  • Robinson, Ian; Harder, Ross
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2400

Effect of misfit strain on ferroelectric domain formation at the morphotropic phase boundary
journal, December 2016


Applications of Modern Ferroelectrics
journal, February 2007


Direct structural determination in ultrathin ferroelectric films by analysis of synchrotron x-ray scattering measurements
journal, April 2005


Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field
journal, August 2017


Ferroelastic domain switching dynamics under electrical and mechanical excitations
journal, May 2014

  • Gao, Peng; Britson, Jason; Nelson, Christopher T.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4801

Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals
journal, July 2014


90 ° domain dynamics and relaxation in thin ferroelectric/ferroelastic films
journal, May 2010


Evidence for a surface anomaly during the cubic-tetragonal phase transition in BaTiO 3 (001)
journal, July 2018

  • Barrett, N.; Dionot, J.; Martinotti, D.
  • Applied Physics Letters, Vol. 113, Issue 2
  • DOI: 10.1063/1.5030498

Improved success rate and stability for phase retrieval by including randomized overrelaxation in the hybrid input output algorithm
journal, January 2012

  • Köhl, Martin; Minkevich, A. A.; Baumbach, Tilo
  • Optics Express, Vol. 20, Issue 15
  • DOI: 10.1364/OE.20.017093

Conduction at domain walls in oxide multiferroics
journal, January 2009

  • Seidel, J.; Martin, L. W.; He, Q.
  • Nature Materials, Vol. 8, Issue 3
  • DOI: 10.1038/nmat2373

Stationary domain wall contribution to enhanced ferroelectric susceptibility
journal, January 2014

  • Xu, Ruijuan; Karthik, J.; Damodaran, Anoop R.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4120

Functional domain walls in multiferroics
journal, November 2015


Anisotropic conductance at improper ferroelectric domain walls
journal, February 2012

  • Meier, D.; Seidel, J.; Cano, A.
  • Nature Materials, Vol. 11, Issue 4
  • DOI: 10.1038/nmat3249

Scaling of domain periodicity with thickness measured in Ba Ti O 3 single crystal lamellae and comparison with other ferroics
journal, July 2006


Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films
journal, December 2007

  • Jia, Chun-Lin; Mi, Shao-Bo; Urban, Knut
  • Nature Materials, Vol. 7, Issue 1
  • DOI: 10.1038/nmat2080

Phase-Field Method of Phase Transitions/Domain Structures in Ferroelectric Thin Films: A Review
journal, June 2008


Dynamic Behavior of Domain Walls in Barium Titanate
journal, May 1955


Dynamics of Multiferroic Domain Wall in Spin-Cycloidal Ferroelectric DyMnO 3
journal, February 2009


Twinning in ferroelectric and ferroelastic ceramics: stress relief
journal, June 1990


The Physics of Ferroelectric Memories
journal, July 1998

  • Auciello, Orlando; Scott, James F.; Ramesh, Ramamoorthy
  • Physics Today, Vol. 51, Issue 7
  • DOI: 10.1063/1.882324

Ferroelastic Materials
journal, August 2012


Strain field in (Ga,Mn)As/GaAs periodic wires revealed by coherent X-ray diffraction
journal, May 2011


Probing Strain in Bent Semiconductor Nanowires with Raman Spectroscopy
journal, April 2010

  • Chen, Jianing; Conache, Gabriela; Pistol, Mats-Erik
  • Nano Letters, Vol. 10, Issue 4
  • DOI: 10.1021/nl904040y

Three-Dimensional Computer Simulation of Ferroelectric Domain Formation
journal, March 1998


Structures of the ferroelectric phases of barium titanate
journal, March 1993

  • Kwei, G. H.; Lawson, A. C.; Billinge, S. J. L.
  • The Journal of Physical Chemistry, Vol. 97, Issue 10
  • DOI: 10.1021/j100112a043

Domain Dynamics During Ferroelectric Switching
journal, November 2011


Coherent nanoscale X-ray probe for crystal interrogation at ID01, ESRF – The European Synchrotron
journal, April 2017


High-resolution X-ray diffraction from microstructures
journal, April 1997


Quantitative imaging of flux vortices in the type-II superconductor MgB 2 using cryo-Lorentz transmission electron microscopy
journal, July 2013


Surface Proximity Effect, Imprint Memory of Ferroelectric Twins, and Tweed in the Paraelectric Phase of BaTiO3
journal, September 2018


Ferroelectric Field Effect Transistors for Memory Applications
journal, April 2010

  • Hoffman, Jason; Pan, Xiao; Reiner, James W.
  • Advanced Materials, Vol. 22, Issue 26-27
  • DOI: 10.1002/adma.200904327

Diffuse scattering from microstructures and mesostructures
journal, January 2005


Selective coherent x-ray diffractive imaging of displacement fields in (Ga,Mn)As/GaAs periodic wires
journal, August 2011


Ferroelectric Switching Dynamics of Topological Vortex Domains in a Hexagonal Manganite
journal, March 2013


Enhanced electromechanical response of ferroelectrics due to charged domain walls
journal, January 2012

  • Sluka, Tomas; Tagantsev, Alexander K.; Damjanovic, Dragan
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1751

Domain configuration and equilibrium size of domains in BaTiO 3 ceramics
journal, September 1980

  • Arlt, G.; Sasko, P.
  • Journal of Applied Physics, Vol. 51, Issue 9
  • DOI: 10.1063/1.328372

Nanoferroelectrics: statics and dynamics
journal, April 2006


Ferroelectric thin films: Review of materials, properties, and applications
journal, September 2006

  • Setter, N.; Damjanovic, D.; Eng, L.
  • Journal of Applied Physics, Vol. 100, Issue 5
  • DOI: 10.1063/1.2336999

Characteristics of ferroelectric-ferroelastic domains in Néel-type skyrmion host GaV4S8
journal, March 2017

  • Butykai, Ádám; Bordács, Sándor; Kézsmárki, István
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep44663

Ferroelectric polarization reversal via successive ferroelastic transitions
journal, October 2014

  • Xu, Ruijuan; Liu, Shi; Grinberg, Ilya
  • Nature Materials, Vol. 14, Issue 1
  • DOI: 10.1038/nmat4119

Domain wall nanoelectronics
journal, February 2012


Physics of thin-film ferroelectric oxides
journal, October 2005


Domain formation and elastic long-range interaction in ferroelectric perovskites
journal, September 1994


Defect-Mediated Polarization Switching in Ferroelectrics and Related Materials: From Mesoscopic Mechanisms to Atomistic Control
journal, January 2010

  • Kalinin, Sergei V.; Rodriguez, Brian J.; Borisevich, Albina Y.
  • Advanced Materials, Vol. 22, Issue 3
  • DOI: 10.1002/adma.200900813

Polar precursor ordering in BaTiO 3 detected by resonant piezoelectric spectroscopy
journal, September 2013

  • Aktas, Oktay; Carpenter, Michael A.; Salje, Ekhard K. H.
  • Applied Physics Letters, Vol. 103, Issue 14
  • DOI: 10.1063/1.4823576

Sheet superconductivity in twin walls: experimental evidence of
journal, June 1998


Domains in three-dimensional ferroelectric nanostructures: theory and experiment
journal, March 2007


Dynamics of ferroelastic domains in ferroelectric thin films
journal, December 2002

  • Nagarajan, V.; Roytburd, A.; Stanishevsky, A.
  • Nature Materials, Vol. 2, Issue 1
  • DOI: 10.1038/nmat800

Some implications of a theorem due to Shannon
journal, November 1952


Probing the three-dimensional strain inhomogeneity and equilibrium elastic properties of single crystal Ni nanowires
journal, July 2012

  • Fohtung, E.; Kim, J. W.; Chan, Keith T.
  • Applied Physics Letters, Vol. 101, Issue 3
  • DOI: 10.1063/1.4737440

First-Principles Study of Piezoelectricity in PbTiO 3
journal, May 1998

  • Sághi-Szabó, Gotthard; Cohen, Ronald E.; Krakauer, Henry
  • Physical Review Letters, Vol. 80, Issue 19
  • DOI: 10.1103/PhysRevLett.80.4321