DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molybdenum Disulfide Catalytic Coatings via Atomic Layer Deposition for Solar Hydrogen Production from Copper Gallium Diselenide Photocathodes

Abstract

We demonstrate that applying atomic layer deposition-derived molybdenum disulfide (MoS2) catalytic coatings on copper gallium diselenide (CGSe) thin film absorbers can lead to efficient wide band gap photocathodes for photoelectrochemical hydrogen production. We have prepared a device that is free of precious metals, employing a CGSe absorber and a cadmium sulfide (CdS) buffer layer, a titanium dioxide (TiO2) interfacial layer, and a MoS2 catalytic layer. The resulting MoS2/TiO2/CdS/CGSe photocathode exhibits a photocurrent onset of +0.53 V vs RHE and a saturation photocurrent density of -10 mA cm-2, with stable operation for >5 h in acidic electrolyte. Spectroscopic investigations of this device architecture indicate that overlayer degradation occurs inhomogeneously, ultimately exposing the underlying CGSe absorber.

Authors:
 [1]; ORCiD logo [1];  [2];  [3];  [3];  [4]; ORCiD logo [5];  [6];  [3];  [4]; ORCiD logo [7]
  1. Stanford Univ., CA (United States)
  2. Univ. of Nevada, Las Vegas, NV (United States)
  3. Univ. of Hawaii, Honolulu, HI (United States)
  4. Univ. of Nevada, Las Vegas, NV (United States); Karlsruhe Inst. of Technology (KIT) (Germany)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  6. Univ. of Nevada, Las Vegas, NV (United States); Karlsruhe Inst. of Technology (KIT) (Germany); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  7. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
Univ. of Hawaii, Honolulu, HI (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Hydrogen Fuel Cell Technologies Office; National Science Foundation (NSF)
OSTI Identifier:
1570459
Alternate Identifier(s):
OSTI ID: 1594909
Grant/Contract Number:  
EE0006670; AC02-05CH11231; AC02-76SF00515; ECCS-1542152
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Energy Materials
Additional Journal Information:
Journal Volume: 2; Journal Issue: 2; Journal ID: ISSN 2574-0962
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
08 HYDROGEN; photoelectrochemical water splitting; copper gallium diselenide; molybdenum disulfide; hydrogen evolution; atomic layer deposition

Citation Formats

Hellstern, Thomas R., Palm, David W., Carter, James, DeAngelis, Alex D., Horsley, Kimberly, Weinhardt, Lothar, Yang, Wanli, Blum, Monika, Gaillard, Nicolas, Heske, Clemens, and Jaramillo, Thomas F. Molybdenum Disulfide Catalytic Coatings via Atomic Layer Deposition for Solar Hydrogen Production from Copper Gallium Diselenide Photocathodes. United States: N. p., 2019. Web. doi:10.1021/acsaem.8b01562.
Hellstern, Thomas R., Palm, David W., Carter, James, DeAngelis, Alex D., Horsley, Kimberly, Weinhardt, Lothar, Yang, Wanli, Blum, Monika, Gaillard, Nicolas, Heske, Clemens, & Jaramillo, Thomas F. Molybdenum Disulfide Catalytic Coatings via Atomic Layer Deposition for Solar Hydrogen Production from Copper Gallium Diselenide Photocathodes. United States. https://doi.org/10.1021/acsaem.8b01562
Hellstern, Thomas R., Palm, David W., Carter, James, DeAngelis, Alex D., Horsley, Kimberly, Weinhardt, Lothar, Yang, Wanli, Blum, Monika, Gaillard, Nicolas, Heske, Clemens, and Jaramillo, Thomas F. Tue . "Molybdenum Disulfide Catalytic Coatings via Atomic Layer Deposition for Solar Hydrogen Production from Copper Gallium Diselenide Photocathodes". United States. https://doi.org/10.1021/acsaem.8b01562. https://www.osti.gov/servlets/purl/1570459.
@article{osti_1570459,
title = {Molybdenum Disulfide Catalytic Coatings via Atomic Layer Deposition for Solar Hydrogen Production from Copper Gallium Diselenide Photocathodes},
author = {Hellstern, Thomas R. and Palm, David W. and Carter, James and DeAngelis, Alex D. and Horsley, Kimberly and Weinhardt, Lothar and Yang, Wanli and Blum, Monika and Gaillard, Nicolas and Heske, Clemens and Jaramillo, Thomas F.},
abstractNote = {We demonstrate that applying atomic layer deposition-derived molybdenum disulfide (MoS2) catalytic coatings on copper gallium diselenide (CGSe) thin film absorbers can lead to efficient wide band gap photocathodes for photoelectrochemical hydrogen production. We have prepared a device that is free of precious metals, employing a CGSe absorber and a cadmium sulfide (CdS) buffer layer, a titanium dioxide (TiO2) interfacial layer, and a MoS2 catalytic layer. The resulting MoS2/TiO2/CdS/CGSe photocathode exhibits a photocurrent onset of +0.53 V vs RHE and a saturation photocurrent density of -10 mA cm-2, with stable operation for >5 h in acidic electrolyte. Spectroscopic investigations of this device architecture indicate that overlayer degradation occurs inhomogeneously, ultimately exposing the underlying CGSe absorber.},
doi = {10.1021/acsaem.8b01562},
journal = {ACS Applied Energy Materials},
number = 2,
volume = 2,
place = {United States},
year = {Tue Jan 22 00:00:00 EST 2019},
month = {Tue Jan 22 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hydrogen production via solid electrolytic routes: Hydrogen production
journal, September 2012

  • Badwal, Sukhvinder P. S.; Giddey, Sarbjit; Munnings, Christopher
  • Wiley Interdisciplinary Reviews: Energy and Environment, Vol. 2, Issue 5
  • DOI: 10.1002/wene.50

Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects
journal, October 2002


Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013

  • Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40831k

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Modeling Practical Performance Limits of Photoelectrochemical Water Splitting Based on the Current State of Materials Research
journal, April 2014


An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Hu, Shu; Xiang, Chengxiang; Haussener, Sophia
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40453f

Efficiency of Splitting Water with Semiconducting Photoelectrodes
journal, January 1984

  • Weber, Michael F.
  • Journal of The Electrochemical Society, Vol. 131, Issue 6
  • DOI: 10.1149/1.2115797

Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices
journal, January 2014

  • Döscher, H.; Geisz, J. F.; Deutsch, T. G.
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01753F

Improved performance in ZnO/CdS/CuGaSe2 thin-film solar cells
journal, January 2003

  • Young, David L.; Keane, James; Duda, Anna
  • Progress in Photovoltaics: Research and Applications, Vol. 11, Issue 8
  • DOI: 10.1002/pip.516

CIGS Cells and Modules With High Efficiency on Glass and Flexible Substrates
journal, January 2014


Synthesis of CuInS 2 , CuInSe 2 , and Cu(In x Ga 1- x )Se 2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics
journal, December 2008

  • Panthani, Matthew G.; Akhavan, Vahid; Goodfellow, Brian
  • Journal of the American Chemical Society, Vol. 130, Issue 49
  • DOI: 10.1021/ja805845q

Molecular-ink route to 13.0% efficient low-bandgap CuIn(S,Se) 2 and 14.7% efficient Cu(In,Ga)(S,Se) 2 solar cells
journal, January 2016

  • Uhl, A. R.; Katahara, J. K.; Hillhouse, H. W.
  • Energy & Environmental Science, Vol. 9, Issue 1
  • DOI: 10.1039/C5EE02870A

Determination of the band gap depth profile of the penternary Cu(In(1−X)GaX)(SYSe(1−Y))2 chalcopyrite from its composition gradient
journal, October 2004

  • Bär, M.; Bohne, W.; Röhrich, J.
  • Journal of Applied Physics, Vol. 96, Issue 7
  • DOI: 10.1063/1.1786340

Photoelectrochemical Hydrogen Evolution from Water Using Copper Gallium Selenide Electrodes Prepared by a Particle Transfer Method
journal, January 2014

  • Kumagai, Hiromu; Minegishi, Tsutomu; Moriya, Yosuke
  • The Journal of Physical Chemistry C, Vol. 118, Issue 30
  • DOI: 10.1021/jp409921f

Stable Hydrogen Evolution from CdS-Modified CuGaSe 2 Photoelectrode under Visible-Light Irradiation
journal, March 2013

  • Moriya, Makoto; Minegishi, Tsutomu; Kumagai, Hiromu
  • Journal of the American Chemical Society, Vol. 135, Issue 10
  • DOI: 10.1021/ja312653y

Photoelectrolysis of water using thin copper gallium diselenide electrodes
journal, September 2008


Advances in copper-chalcopyrite thin films for solar energy conversion
journal, January 2010

  • Kaneshiro, Jess; Gaillard, Nicolas; Rocheleau, Richard
  • Solar Energy Materials and Solar Cells, Vol. 94, Issue 1
  • DOI: 10.1016/j.solmat.2009.03.032

Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments
journal, August 2010

  • Naghavi, N.; Abou-Ras, D.; Allsop, N.
  • Progress in Photovoltaics: Research and Applications, Vol. 18, Issue 6, p. 411-433
  • DOI: 10.1002/pip.955

Suppression of Surface Dissolution of CdS Photoanode by Reducing Agents
journal, May 1977

  • Inoue, Tooru; Watanabe, Tadashi; Fujishima, Akira
  • Journal of The Electrochemical Society, Vol. 124, Issue 5
  • DOI: 10.1149/1.2133392

On the stability of semiconductor electrodes against photodecomposition
journal, September 1977


Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials
journal, August 2014

  • Benck, Jesse D.; Lee, Sang Chul; Fong, Kara D.
  • Advanced Energy Materials, Vol. 4, Issue 18
  • DOI: 10.1002/aenm.201400739

Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes
journal, May 2016

  • Britto, Reuben J.; Benck, Jesse D.; Young, James L.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 11
  • DOI: 10.1021/acs.jpclett.6b00563

A graded catalytic–protective layer for an efficient and stable water-splitting photocathode
journal, January 2017


Highly Stable Molybdenum Disulfide Protected Silicon Photocathodes for Photoelectrochemical Water Splitting
journal, October 2017

  • King, Laurie A.; Hellstern, Thomas R.; Park, Joonsuk
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 42
  • DOI: 10.1021/acsami.7b10749

Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst
journal, January 2014

  • Morales-Guio, Carlos G.; Tilley, S. David; Vrubel, Heron
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4059

MoS2—an integrated protective and active layer on n+p-Si for solar H2 evolution
journal, January 2013

  • Laursen, Anders B.; Pedersen, Thomas; Malacrida, Paolo
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 46
  • DOI: 10.1039/c3cp52890a

Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
journal, October 2014

  • Benck, Jesse D.; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs500923c

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

High efficiency Cu(In,Ga)Se2-based solar cells: processing of novel absorber structures
conference, January 1994

  • Contreras, M.A.; Tuttle, J.; Gabor, A.
  • Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)
  • DOI: 10.1109/WCPEC.1994.519811

Wide Band Gap CuGa(S,Se) 2 Thin Films on Transparent Conductive Fluorinated Tin Oxide Substrates as Photocathode Candidates for Tandem Water Splitting Devices
journal, May 2018

  • DeAngelis, Alexander D.; Horsley, Kimberly; Gaillard, Nicolas
  • The Journal of Physical Chemistry C, Vol. 122, Issue 26
  • DOI: 10.1021/acs.jpcc.8b02915

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Growth of thin films of molybdenum oxide by atomic layer deposition
journal, January 2011

  • Diskus, Madeleine; Nilsen, Ola; Fjellvåg, Helmer
  • J. Mater. Chem., Vol. 21, Issue 3
  • DOI: 10.1039/C0JM01099E

Core–shell MoO3–MoS2 Nanowires for Hydrogen Evolution A Functional Design for Electrocatalytic Materials
journal, October 2011

  • Chen, Zhebo; Cummins, Dustin; Reinecke, Benjamin N.
  • Nano Letters, Vol. 11, Issue 10, p. 4168-4175
  • DOI: 10.1021/nl2020476

High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source
journal, March 2017

  • Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing
  • Review of Scientific Instruments, Vol. 88, Issue 3
  • DOI: 10.1063/1.4977592

Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols
journal, January 2010

  • Chen, Zhebo; Jaramillo, Thomas F.; Deutsch, Todd G.
  • Journal of Materials Research, Vol. 25, Issue 1
  • DOI: 10.1557/JMR.2010.0020

CdS/Cu(In,Ga)Se2 interface formation in high-efficiency thin film solar cells
journal, August 2010

  • Pookpanratana, S.; Repins, I.; Bär, M.
  • Applied Physics Letters, Vol. 97, Issue 7
  • DOI: 10.1063/1.3481405

Works referencing / citing this record:

Efficiency and stability of narrow-gap semiconductor-based photoelectrodes
journal, January 2019

  • Zheng, Jianyun; Zhou, Huaijuan; Zou, Yuqin
  • Energy & Environmental Science, Vol. 12, Issue 8
  • DOI: 10.1039/c9ee00524b

Pulsed Laser Deposition of Nanostructured MoS3/np-Mo//WO3−y Hybrid Catalyst for Enhanced (Photo) Electrochemical Hydrogen Evolution
journal, September 2019

  • Fominski, Vyacheslav; Gnedovets, Alexey; Fominski, Dmitry
  • Nanomaterials, Vol. 9, Issue 10
  • DOI: 10.3390/nano9101395