DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts

Abstract

Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties to serve as the large bandgap, top junction in a dual absorber tandem solar water splitting device. Poor intrinsic catalytic ability and surface corrosion in aqueous electrolyte remain key obstacles. Significant progress has been made developing thin-film protection layers and active catalysts for photoelectrochemical devices, but combining these into a catalytic protection layer that can provide long-term stability without sacrificing performance has proven difficult due, in large part, to challenges in developing active and stable interfaces. In this work, we demonstrate that a nanoscale molybdenum disulfide (MoS2) film functions both as an effective protection layer and excellent hydrogen evolution catalyst for GaInP2 photocathodes, with only a ~10% loss in initial light-limited current density after 100 h, and a photocurrent onset potential better than that of the same state-of-the-art device with a platinum-ruthenium catalyst. Using transient photoreflectance spectroscopy, we probed the carrier dynamics of these photocathodes and show that the MoS2 coated device exhibits improved electron transfer at the surface interface compared to the PtRu catalyzed device. These MoS2 protected devices are among the most active and stable single-absorber photocathodes for solar water splitting to date and offermore » a promising pathway towards generating hydrogen with high efficiency and significant longevity.« less

Authors:
 [1]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2];  [1]
  1. Stanford Univ., CA (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Hydrogen Fuel Cell Technologies Office (HFTO); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Hydrogen Fuel Cell Technologies Office (HFTO)
OSTI Identifier:
1547250
Alternate Identifier(s):
OSTI ID: 1530628; OSTI ID: 2305590
Report Number(s):
NREL/JA-5900-68895
Journal ID: ISSN 2050-7488; JMCAET
Grant/Contract Number:  
AC36-08GO28308; FOA-0001647; EE0008084
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 7; Journal Issue: 28; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; photocurrent; photocathodes; single-absorber; photoreflectance; phosphide; bandgap; catalysts; solar hydrogen; 08 HYDROGEN; hydrogen, photoelectrochemical (PEC) water-splitting

Citation Formats

Britto, Reuben J., Young, James, Yang, Ye, Steiner, Myles A., LaFehr, David, Friedman, Daniel J., Beard, Matthew C., Deutsch, Todd G., and Jaramillo, Thomas F. Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts. United States: N. p., 2019. Web. doi:10.1039/C9TA05247J.
Britto, Reuben J., Young, James, Yang, Ye, Steiner, Myles A., LaFehr, David, Friedman, Daniel J., Beard, Matthew C., Deutsch, Todd G., & Jaramillo, Thomas F. Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts. United States. https://doi.org/10.1039/C9TA05247J
Britto, Reuben J., Young, James, Yang, Ye, Steiner, Myles A., LaFehr, David, Friedman, Daniel J., Beard, Matthew C., Deutsch, Todd G., and Jaramillo, Thomas F. Sun . "Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts". United States. https://doi.org/10.1039/C9TA05247J. https://www.osti.gov/servlets/purl/1547250.
@article{osti_1547250,
title = {Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts},
author = {Britto, Reuben J. and Young, James and Yang, Ye and Steiner, Myles A. and LaFehr, David and Friedman, Daniel J. and Beard, Matthew C. and Deutsch, Todd G. and Jaramillo, Thomas F.},
abstractNote = {Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties to serve as the large bandgap, top junction in a dual absorber tandem solar water splitting device. Poor intrinsic catalytic ability and surface corrosion in aqueous electrolyte remain key obstacles. Significant progress has been made developing thin-film protection layers and active catalysts for photoelectrochemical devices, but combining these into a catalytic protection layer that can provide long-term stability without sacrificing performance has proven difficult due, in large part, to challenges in developing active and stable interfaces. In this work, we demonstrate that a nanoscale molybdenum disulfide (MoS2) film functions both as an effective protection layer and excellent hydrogen evolution catalyst for GaInP2 photocathodes, with only a ~10% loss in initial light-limited current density after 100 h, and a photocurrent onset potential better than that of the same state-of-the-art device with a platinum-ruthenium catalyst. Using transient photoreflectance spectroscopy, we probed the carrier dynamics of these photocathodes and show that the MoS2 coated device exhibits improved electron transfer at the surface interface compared to the PtRu catalyzed device. These MoS2 protected devices are among the most active and stable single-absorber photocathodes for solar water splitting to date and offer a promising pathway towards generating hydrogen with high efficiency and significant longevity.},
doi = {10.1039/C9TA05247J},
journal = {Journal of Materials Chemistry. A},
number = 28,
volume = 7,
place = {United States},
year = {Sun Jun 02 00:00:00 EDT 2019},
month = {Sun Jun 02 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Low-Cost, Efficient, and Durable H 2 Production by Photoelectrochemical Water Splitting with CuGa 3 Se 5 Photocathodes
journal, May 2018

  • Muzzillo, Christopher P.; Klein, W. Ellis; Li, Zhen
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 23
  • DOI: 10.1021/acsami.8b01447

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

Highly Stable Molybdenum Disulfide Protected Silicon Photocathodes for Photoelectrochemical Water Splitting
journal, October 2017

  • King, Laurie A.; Hellstern, Thomas R.; Park, Joonsuk
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 42
  • DOI: 10.1021/acsami.7b10749

Electrochemical Stability of p-GaInP[sub 2] in Aqueous Electrolytes Toward Photoelectrochemical Water Splitting
journal, January 1998

  • Khaselev, Oscar
  • Journal of The Electrochemical Society, Vol. 145, Issue 10
  • DOI: 10.1149/1.1838808

Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films
journal, January 2017


Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen
journal, March 1995

  • Bard, Allen J.; Fox, Marye Anne
  • Accounts of Chemical Research, Vol. 28, Issue 3
  • DOI: 10.1021/ar00051a007

Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance
journal, January 2016

  • Döscher, H.; Young, J. L.; Geisz, J. F.
  • Energy & Environmental Science, Vol. 9, Issue 1
  • DOI: 10.1039/C5EE03206G

XPS investigation on vacuum thermal desorption of UV/ozone treated GaAs(100) surfaces
journal, January 1992


Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2 evolution
journal, January 2013

  • Seger, Brian; Tilley, David S.; Pedersen, Thomas
  • RSC Advances, Vol. 3, Issue 48
  • DOI: 10.1039/c3ra45966g

p-Type InP Nanopillar Photocathodes for Efficient Solar-Driven Hydrogen Production
journal, September 2012

  • Lee, Min Hyung; Takei, Kuniharu; Zhang, Junjun
  • Angewandte Chemie International Edition, Vol. 51, Issue 43
  • DOI: 10.1002/anie.201203174

Hydrogen Evolution Over Bimetallic Systems: Understanding the Trends
journal, May 2006

  • Greeley, Jeff; Nørskov, Jens K.; Kibler, Ludwig A.
  • ChemPhysChem, Vol. 7, Issue 5, p. 1032-1035
  • DOI: 10.1002/cphc.200500663

Nickel-coated silicon photocathode for water splitting in alkaline electrolytes
journal, January 2015


Durable hydrogen evolution from water driven by sunlight using (Ag,Cu)GaSe 2 photocathodes modified with CdS and CuGa 3 Se 5
journal, January 2015

  • Zhang, Li; Minegishi, Tsutomu; Nakabayashi, Mamiko
  • Chemical Science, Vol. 6, Issue 2
  • DOI: 10.1039/C4SC02346C

Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013

  • Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40831k

An ESCA study of the interaction of oxygen with the surface of ruthenium
journal, July 1991


Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials
journal, October 2014

  • Benck, Jesse D.; Hellstern, Thomas R.; Kibsgaard, Jakob
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs500923c

Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film
journal, June 2010

  • Yokoyama, Daisuke; Minegishi, Tsutomu; Maeda, Kazuhiko
  • Electrochemistry Communications, Vol. 12, Issue 6
  • DOI: 10.1016/j.elecom.2010.04.004

Remarkable stability of unmodified GaAs photocathodes during hydrogen evolution in acidic electrolyte
journal, January 2016

  • Young, J. L.; Steirer, K. X.; Dzara, M. J.
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA07648J

Carrier-selective p- and n-contacts for efficient and stable photocatalytic water reduction
journal, July 2017


Integrated MoSe 2 with n + p-Si photocathodes for solar water splitting with high efficiency and stability
journal, January 2018

  • Huang, Guanping; Mao, Jie; Fan, Ronglei
  • Applied Physics Letters, Vol. 112, Issue 1
  • DOI: 10.1063/1.5012110

Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production
journal, October 2013

  • Lin, Yongjing; Battaglia, Corsin; Boccard, Mathieu
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl403265k

Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure
journal, September 2015

  • May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9286

A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst
journal, December 2014

  • Ji, Li; McDaniel, Martin D.; Wang, Shijun
  • Nature Nanotechnology, Vol. 10, Issue 1
  • DOI: 10.1038/nnano.2014.277

Efficient and Stable Silicon Microwire Photocathodes with a Nickel Silicide Interlayer for Operation in Strongly Alkaline Solutions
journal, April 2018


MoS2—an integrated protective and active layer on n+p-Si for solar H2 evolution
journal, January 2013

  • Laursen, Anders B.; Pedersen, Thomas; Malacrida, Paolo
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 46
  • DOI: 10.1039/c3cp52890a

Modelling heterogeneous interfaces for solar water splitting
journal, January 2017

  • Pham, Tuan Anh; Ping, Yuan; Galli, Giulia
  • Nature Materials, Vol. 16, Issue 4
  • DOI: 10.1038/nmat4803

Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators
journal, October 2015

  • Hu, Shu; Lewis, Nathan S.; Ager, Joel W.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 43
  • DOI: 10.1021/acs.jpcc.5b05976

An Optocatalytic Model for Semiconductor–Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts
journal, March 2013

  • Trotochaud, Lena; Mills, Thomas J.; Boettcher, Shannon W.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 6
  • DOI: 10.1021/jz4002604

Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials
journal, August 2014

  • Benck, Jesse D.; Lee, Sang Chul; Fong, Kara D.
  • Advanced Energy Materials, Vol. 4, Issue 18
  • DOI: 10.1002/aenm.201400739

Core–shell MoO3–MoS2 Nanowires for Hydrogen Evolution A Functional Design for Electrocatalytic Materials
journal, October 2011

  • Chen, Zhebo; Cummins, Dustin; Reinecke, Benjamin N.
  • Nano Letters, Vol. 11, Issue 10, p. 4168-4175
  • DOI: 10.1021/nl2020476

Semiconductor interfacial carrier dynamics via photoinduced electric fields
journal, November 2015


Role of TiO 2 Surface Passivation on Improving the Performance of p-InP Photocathodes
journal, February 2015

  • Lin, Yongjing; Kapadia, Rehan; Yang, Jinhui
  • The Journal of Physical Chemistry C, Vol. 119, Issue 5
  • DOI: 10.1021/jp5107313

Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes
journal, May 2016

  • Britto, Reuben J.; Benck, Jesse D.; Young, James L.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 11
  • DOI: 10.1021/acs.jpclett.6b00563

Surface core level shifts of Pt(111) measured with Y Mχ radiation (132.3 eV)
journal, February 1986


Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se 2 photocathodes
journal, January 2015

  • Kumagai, Hiromu; Minegishi, Tsutomu; Sato, Naotoshi
  • Journal of Materials Chemistry A, Vol. 3, Issue 16
  • DOI: 10.1039/C5TA01058F

Combined spectroscopy and microscopy of supported MoS2 nanoparticles
journal, May 2009


Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal
journal, August 2015

  • Yang, Ye; Yan, Yong; Yang, Mengjin
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8961

Modeling of photovoltaic module and experimental determination of serial resistance
journal, January 2009


Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst
journal, December 2015

  • Gu, Jing; Yan, Yong; Young, James L.
  • Nature Materials, Vol. 15, Issue 4
  • DOI: 10.1038/nmat4511

Reactive sputtering of InP in N2 and N2/O2 plasmas
journal, May 1991

  • Sundararaman, C. S.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 9, Issue 3
  • DOI: 10.1116/1.585446

Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
journal, January 2015

  • Ager, Joel W.; Shaner, Matthew R.; Walczak, Karl A.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE00457H

Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures
journal, March 2017

  • Young, James L.; Steiner, Myles A.; Döscher, Henning
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.28

Optical constants of Ga x In 1− x P lattice matched to GaAs
journal, April 1995

  • Schubert, Mathias; Gottschalch, V.; Herzinger, Craig M.
  • Journal of Applied Physics, Vol. 77, Issue 7
  • DOI: 10.1063/1.358632

How a century of ammonia synthesis changed the world
journal, September 2008

  • Erisman, Jan Willem; Sutton, Mark A.; Galloway, James
  • Nature Geoscience, Vol. 1, Issue 10
  • DOI: 10.1038/ngeo325

Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water-Splitting Photocathodes
journal, July 2013

  • Tilley, S. David; Schreier, Marcel; Azevedo, João
  • Advanced Functional Materials, Vol. 24, Issue 3
  • DOI: 10.1002/adfm.201301106

Hydrogen adsorption on and diffusion through MoS2 monolayer: First-principles study
journal, October 2012

  • Keong Koh, Eugene Wai; Chiu, Cheng Hsin; Lim, Yao Kun
  • International Journal of Hydrogen Energy, Vol. 37, Issue 19
  • DOI: 10.1016/j.ijhydene.2012.07.069

XPS investigation of anodic oxides grown on p-type InP
journal, November 1990

  • Faur, Maria; Faur, Mircea; Jayne, D. T.
  • Surface and Interface Analysis, Vol. 15, Issue 11
  • DOI: 10.1002/sia.740151102

Hydrogen evolution on platinum-coated p-silicon photocathodes
journal, October 1996


Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Photoelectrolysis of water using thin copper gallium diselenide electrodes
journal, September 2008


Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst
journal, January 2014

  • Morales-Guio, Carlos G.; Tilley, S. David; Vrubel, Heron
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4059

Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices
journal, January 2014

  • Döscher, H.; Geisz, J. F.; Deutsch, T. G.
  • Energy Environ. Sci., Vol. 7, Issue 9
  • DOI: 10.1039/C4EE01753F

A graded catalytic–protective layer for an efficient and stable water-splitting photocathode
journal, January 2017


Works referencing / citing this record:

Grain size control of crystalline III–V semiconductors at ambient conditions using electrochemically mediated growth
journal, January 2020

  • Valenti, Marco; Bleiji, Yorick; Portals, Javier Blanco
  • Journal of Materials Chemistry A, Vol. 8, Issue 5
  • DOI: 10.1039/c9ta07410d