skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine Learning for Computational Heterogeneous Catalysis

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory 2575 Sand Hill Road, Menlo Park California 94025 United States, Department of Chemical Engineering Stanford University 443 Via Ortega Stanford CA 94305 United States
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1561362
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
ChemCatChem
Additional Journal Information:
Journal Name: ChemCatChem Journal Volume: 11 Journal Issue: 16; Journal ID: ISSN 1867-3880
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Schlexer Lamoureux, Philomena, Winther, Kirsten T., Garrido Torres, Jose Antonio, Streibel, Verena, Zhao, Meng, Bajdich, Michal, Abild‐Pedersen, Frank, and Bligaard, Thomas. Machine Learning for Computational Heterogeneous Catalysis. Germany: N. p., 2019. Web. https://doi.org/10.1002/cctc.201900595.
Schlexer Lamoureux, Philomena, Winther, Kirsten T., Garrido Torres, Jose Antonio, Streibel, Verena, Zhao, Meng, Bajdich, Michal, Abild‐Pedersen, Frank, & Bligaard, Thomas. Machine Learning for Computational Heterogeneous Catalysis. Germany. https://doi.org/10.1002/cctc.201900595
Schlexer Lamoureux, Philomena, Winther, Kirsten T., Garrido Torres, Jose Antonio, Streibel, Verena, Zhao, Meng, Bajdich, Michal, Abild‐Pedersen, Frank, and Bligaard, Thomas. Tue . "Machine Learning for Computational Heterogeneous Catalysis". Germany. https://doi.org/10.1002/cctc.201900595.
@article{osti_1561362,
title = {Machine Learning for Computational Heterogeneous Catalysis},
author = {Schlexer Lamoureux, Philomena and Winther, Kirsten T. and Garrido Torres, Jose Antonio and Streibel, Verena and Zhao, Meng and Bajdich, Michal and Abild‐Pedersen, Frank and Bligaard, Thomas},
abstractNote = {},
doi = {10.1002/cctc.201900595},
journal = {ChemCatChem},
number = 16,
volume = 11,
place = {Germany},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/cctc.201900595

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Fast Prediction of Adsorption Properties for Platinum Nanocatalysts with Generalized Coordination Numbers
journal, June 2014

  • Calle-Vallejo, Federico; Martínez, José I.; García-Lastra, Juan M.
  • Angewandte Chemie, Vol. 126, Issue 32
  • DOI: 10.1002/ange.201402958

Descriptors of Oxygen-Evolution Activity for Oxides: A Statistical Evaluation
journal, December 2015

  • Hong, Wesley T.; Welsch, Roy E.; Shao-Horn, Yang
  • The Journal of Physical Chemistry C, Vol. 120, Issue 1
  • DOI: 10.1021/acs.jpcc.5b10071

Beyond Scaling Relations for the Description of Catalytic Materials
journal, February 2019


The nature of the active site in heterogeneous metal catalysis
journal, January 2008

  • Nørskov, Jens K.; Bligaard, Thomas; Hvolbæk, Britt
  • Chemical Society Reviews, Vol. 37, Issue 10
  • DOI: 10.1039/b800260f

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

Linear Inversion of Band-Limited Reflection Seismograms
journal, October 1986

  • Santosa, Fadil; Symes, William W.
  • SIAM Journal on Scientific and Statistical Computing, Vol. 7, Issue 4
  • DOI: 10.1137/0907087

New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships
journal, April 2016

  • Jain, Anubhav; Hautier, Geoffroy; Ong, Shyue Ping
  • Journal of Materials Research, Vol. 31, Issue 8
  • DOI: 10.1557/jmr.2016.80

CatApp: A Web Application for Surface Chemistry and Heterogeneous Catalysis
journal, December 2011

  • Hummelshøj, Jens S.; Abild-Pedersen, Frank; Studt, Felix
  • Angewandte Chemie, Vol. 124, Issue 1
  • DOI: 10.1002/ange.201107947

A genetic algorithm for generating initial parameter estimations for kinetic models of catalytic processes
journal, October 1996


Electronic factors determining the reactivity of metal surfaces
journal, December 1995


Machine-learning prediction of the d-band center for metals and bimetals
journal, January 2016

  • Takigawa, Ichigaku; Shimizu, Ken-ichi; Tsuda, Koji
  • RSC Advances, Vol. 6, Issue 58
  • DOI: 10.1039/C6RA04345C

Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design
journal, June 2016


Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations
journal, July 2017


Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces
journal, March 2017


Prediction of Organic Reaction Outcomes Using Machine Learning
journal, April 2017


Structural optimization of Lennard-Jones clusters by a genetic algorithm
journal, June 1996


Nudged elastic band calculations accelerated with Gaussian process regression
journal, October 2017

  • Koistinen, Olli-Pekka; Dagbjartsdóttir, Freyja B.; Ásgeirsson, Vilhjálmur
  • The Journal of Chemical Physics, Vol. 147, Issue 15
  • DOI: 10.1063/1.4986787

The Rise of Catalyst Informatics: Towards Catalyst Genomics
journal, January 2019

  • Takahashi, Keisuke; Takahashi, Lauren; Miyazato, Itsuki
  • ChemCatChem, Vol. 11, Issue 4
  • DOI: 10.1002/cctc.201801956

Machine learning for heterogeneous catalyst design and discovery
journal, May 2018

  • Goldsmith, Bryan R.; Esterhuizen, Jacques; Liu, Jin-Xun
  • AIChE Journal, Vol. 64, Issue 7
  • DOI: 10.1002/aic.16198

NOMAD: The FAIR concept for big data-driven materials science
journal, September 2018


Toward Effective Utilization of Methane: Machine Learning Prediction of Adsorption Energies on Metal Alloys
journal, March 2018

  • Toyao, Takashi; Suzuki, Keisuke; Kikuchi, Shoma
  • The Journal of Physical Chemistry C, Vol. 122, Issue 15
  • DOI: 10.1021/acs.jpcc.7b12670

On representing chemical environments
journal, May 2013


Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm
journal, August 2017


Regularization and variable selection via the elastic net
journal, April 2005


The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals
journal, September 2018


A high-throughput framework for determining adsorption energies on solid surfaces
journal, March 2017


Graph Theory Approach to High-Throughput Surface Adsorption Structure Generation
journal, February 2019

  • Boes, Jacob R.; Mamun, Osman; Winther, Kirsten
  • The Journal of Physical Chemistry A, Vol. 123, Issue 11
  • DOI: 10.1021/acs.jpca.9b00311

Machine-Learning-Augmented Chemisorption Model for CO 2 Electroreduction Catalyst Screening
journal, August 2015

  • Ma, Xianfeng; Li, Zheng; Achenie, Luke E. K.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 18
  • DOI: 10.1021/acs.jpclett.5b01660

Thermal Analysis of Heat-Assisted Magnetic Recording Optical Head with Laser Diode on Slider
journal, September 2011

  • Xu, Baoxi; Chia, Cheow Wee; Zhang, Qide
  • Japanese Journal of Applied Physics, Vol. 50, Issue 9S1
  • DOI: 10.7567/JJAP.50.09MA05

Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction
journal, March 2009

  • Greeley, Jeff; Nørskov, Jens K.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 12
  • DOI: 10.1021/jp808945y

Extrapolating Energetics on Clusters and Single-Crystal Surfaces to Nanoparticles by Machine-Learning Scheme
journal, November 2017

  • Jinnouchi, Ryosuke; Hirata, Hirohito; Asahi, Ryoji
  • The Journal of Physical Chemistry C, Vol. 121, Issue 47
  • DOI: 10.1021/acs.jpcc.7b08686

New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
journal, May 2002

  • Belsky, Alec; Hellenbrandt, Mariette; Karen, Vicky Lynn
  • Acta Crystallographica Section B Structural Science, Vol. 58, Issue 3
  • DOI: 10.1107/S0108768102006948

SchNet – A deep learning architecture for molecules and materials
journal, June 2018

  • Schütt, K. T.; Sauceda, H. E.; Kindermans, P. -J.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019779

Adaptive machine learning framework to accelerate ab initio molecular dynamics
journal, December 2014

  • Botu, Venkatesh; Ramprasad, Rampi
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24836

Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration
journal, November 2011

  • Gražulis, Saulius; Daškevič, Adriana; Merkys, Andrius
  • Nucleic Acids Research, Vol. 40, Issue D1
  • DOI: 10.1093/nar/gkr900

New design paradigm for heterogeneous catalysts
journal, April 2015

  • Vojvodic, Aleksandra; Nørskov, Jens K.
  • National Science Review, Vol. 2, Issue 2
  • DOI: 10.1093/nsr/nwv023

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Predicting Adsorption Properties of Catalytic Descriptors on Bimetallic Nanoalloys with Site-Specific Precision
journal, March 2019

  • Choksi, Tej S.; Roling, Luke T.; Streibel, Verena
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 8
  • DOI: 10.1021/acs.jpclett.9b00475

Conditioning of quasi-Newton methods for function minimization
journal, September 1970


Catalysis-Hub.org, an open electronic structure database for surface reactions
journal, May 2019


A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
journal, October 2011


Examining the Linearity of Transition State Scaling Relations
journal, May 2015

  • Plessow, Philipp N.; Abild-Pedersen, Frank
  • The Journal of Physical Chemistry C, Vol. 119, Issue 19
  • DOI: 10.1021/acs.jpcc.5b02055

A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data
journal, March 2018

  • Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke
  • Science and Technology of Advanced Materials, Vol. 19, Issue 1
  • DOI: 10.1080/14686996.2018.1439253

Thermo-Calc & DICTRA, computational tools for materials science
journal, June 2002


A new approach to variable metric algorithms
journal, March 1970


Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure–Property Relationships
journal, November 2017

  • Janet, Jon Paul; Kulik, Heather J.
  • The Journal of Physical Chemistry A, Vol. 121, Issue 46
  • DOI: 10.1021/acs.jpca.7b08750

Machine learning model for non-equilibrium structures and energies of simple molecules
journal, January 2019

  • Iype, E.; Urolagin, S.
  • The Journal of Chemical Physics, Vol. 150, Issue 2
  • DOI: 10.1063/1.5054968

Low-Scaling Algorithm for Nudged Elastic Band Calculations Using a Surrogate Machine Learning Model
journal, April 2019


Alchemical Predictions for Computational Catalysis: Potential and Limitations
journal, September 2017

  • Saravanan, Karthikeyan; Kitchin, John R.; von Lilienfeld, O. Anatole
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 20
  • DOI: 10.1021/acs.jpclett.7b01974

Exploration versus Exploitation in Global Atomistic Structure Optimization
journal, January 2018

  • Jørgensen, Mathias S.; Larsen, Uffe F.; Jacobsen, Karsten W.
  • The Journal of Physical Chemistry A, Vol. 122, Issue 5
  • DOI: 10.1021/acs.jpca.8b00160

Lost in chemical space? Maps to support organometallic catalysis
journal, June 2015


Chemometrics: Views and Propositions
journal, November 1975

  • Kowalski, B. R.
  • Journal of Chemical Information and Modeling, Vol. 15, Issue 4
  • DOI: 10.1021/ci60004a002

Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations
journal, October 2010

  • Skúlason, Egill; Tripkovic, Vladimir; Björketun, Mårten E.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 42
  • DOI: 10.1021/jp1048887

Matminer: An open source toolkit for materials data mining
journal, September 2018


Predictive Structure–Reactivity Models for Rapid Screening of Pt-Based Multimetallic Electrocatalysts for the Oxygen Reduction Reaction
journal, November 2011

  • Xin, Hongliang; Holewinski, Adam; Linic, Suljo
  • ACS Catalysis, Vol. 2, Issue 1
  • DOI: 10.1021/cs200462f

The Computational Materials Repository
journal, November 2012

  • Landis, David D.; Hummelshoj, Jens S.; Nestorov, Svetlozar
  • Computing in Science & Engineering, Vol. 14, Issue 6
  • DOI: 10.1109/MCSE.2012.16

The Development of Descriptors for Solids: Teaching“Catalytic Intuition” to a Computer
journal, October 2004

  • Klanner, Catharina; Farrusseng, David; Baumes, Laurent
  • Angewandte Chemie International Edition, Vol. 43, Issue 40
  • DOI: 10.1002/anie.200460731

Configurational Energies of Nanoparticles Based on Metal–Metal Coordination
journal, October 2017

  • Roling, Luke T.; Li, Lin; Abild-Pedersen, Frank
  • The Journal of Physical Chemistry C, Vol. 121, Issue 41
  • DOI: 10.1021/acs.jpcc.7b08438

The FAIR Guiding Principles for scientific data management and stewardship
journal, March 2016

  • Wilkinson, Mark D.; Dumontier, Michel; Aalbersberg, IJsbrand Jan
  • Scientific Data, Vol. 3, Issue 1
  • DOI: 10.1038/sdata.2016.18

Metadynamics for training neural network model chemistries: A competitive assessment
journal, June 2018

  • Herr, John E.; Yao, Kun; McIntyre, Ryker
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5020067

Research Update: The materials genome initiative: Data sharing and the impact of collaborative ab initio databases
journal, March 2016

  • Jain, Anubhav; Persson, Kristin A.; Ceder, Gerbrand
  • APL Materials, Vol. 4, Issue 5
  • DOI: 10.1063/1.4944683

Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations
journal, January 2011

  • Behler, Jörg
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 40
  • DOI: 10.1039/c1cp21668f

FactSage thermochemical software and databases, 2010–2016
journal, September 2016


Design of a Surface Alloy Catalyst for Steam Reforming
journal, March 1998


Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
journal, April 2010


Feature engineering of machine-learning chemisorption models for catalyst design
journal, February 2017


Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

The Development of Descriptors for Solids: Teaching“Catalytic Intuition” to a Computer
journal, October 2004

  • Klanner, Catharina; Farrusseng, David; Baumes, Laurent
  • Angewandte Chemie, Vol. 116, Issue 40
  • DOI: 10.1002/ange.200460731

Machine Learning Force Fields: Construction, Validation, and Outlook
journal, December 2016


Extracting Knowledge from Data through Catalysis Informatics
journal, June 2018


Neural network as a tool for catalyst development
journal, April 1995


To address surface reaction network complexity using scaling relations machine learning and DFT calculations
journal, March 2017

  • Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14621

Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
journal, April 2018


Strongly Modified Scaling of CO Hydrogenation in Metal Supported TiO Nanostripes
journal, September 2018

  • Sandberg, Robert B.; Hansen, Martin H.; Nørskov, Jens K.
  • ACS Catalysis, Vol. 8, Issue 11
  • DOI: 10.1021/acscatal.8b03327

Machine learning for molecular and materials science
journal, July 2018


Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles
journal, January 2017

  • Fernandez, Michael; Barron, Hector; Barnard, Amanda S.
  • RSC Adv., Vol. 7, Issue 77
  • DOI: 10.1039/C7RA06622H

Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods
journal, August 2015

  • Suleimanov, Yury V.; Green, William H.
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 9
  • DOI: 10.1021/acs.jctc.5b00407

MTDATA - thermodynamic and phase equilibrium software from the national physical laboratory
journal, June 2002


The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations
journal, January 1970


Materials informatics
journal, October 2005


A coordination-based model for transition metal alloy nanoparticles
journal, January 2019

  • Roling, Luke T.; Choksi, Tej S.; Abild-Pedersen, Frank
  • Nanoscale, Vol. 11, Issue 10
  • DOI: 10.1039/C9NR00959K

Chemical Pressure-Driven Enhancement of the Hydrogen Evolving Activity of Ni 2 P from Nonmetal Surface Doping Interpreted via Machine Learning
journal, March 2018

  • Wexler, Robert B.; Martirez, John Mark P.; Rappe, Andrew M.
  • Journal of the American Chemical Society, Vol. 140, Issue 13
  • DOI: 10.1021/jacs.8b00947

Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states
journal, June 2012


A family of variable-metric methods derived by variational means
journal, January 1970


Machine-learning models for combinatorial catalyst discovery
journal, December 2004

  • Landrum, Gregory A.; Penzotti, Julie E.; Putta, Santosh
  • Measurement Science and Technology, Vol. 16, Issue 1
  • DOI: 10.1088/0957-0233/16/1/035

Optimizing Perovskites for the Water-Splitting Reaction
journal, December 2011


An open experimental database for exploring inorganic materials
journal, April 2018

  • Zakutayev, Andriy; Wunder, Nick; Schwarting, Marcus
  • Scientific Data, Vol. 5, Issue 1
  • DOI: 10.1038/sdata.2018.53

Single-ended transition state finding with the growing string method
journal, January 2015

  • Zimmerman, Paul M.
  • Journal of Computational Chemistry, Vol. 36, Issue 9
  • DOI: 10.1002/jcc.23833

From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis
journal, August 2015


The small sample size problem of ICA: A comparative study and analysis
journal, December 2012


Vision for Data and Informatics in the Future Materials Innovation Ecosystem
journal, August 2016


Charting the complete elastic properties of inorganic crystalline compounds
journal, March 2015

  • de Jong, Maarten; Chen, Wei; Angsten, Thomas
  • Scientific Data, Vol. 2, Issue 1
  • DOI: 10.1038/sdata.2015.9

Redesigning the Materials and Catalysts Database Construction Process Using Ontologies
journal, August 2018

  • Takahashi, Lauren; Miyazato, Itsuki; Takahashi, Keisuke
  • Journal of Chemical Information and Modeling, Vol. 58, Issue 9
  • DOI: 10.1021/acs.jcim.8b00165

Active learning with non- ab initio input features toward efficient CO 2 reduction catalysts
journal, January 2018

  • Noh, Juhwan; Back, Seoin; Kim, Jaehoon
  • Chemical Science, Vol. 9, Issue 23
  • DOI: 10.1039/C7SC03422A

High-throughput screening of bimetallic catalysts enabled by machine learning
journal, January 2017

  • Li, Zheng; Wang, Siwen; Chin, Wei Shan
  • Journal of Materials Chemistry A, Vol. 5, Issue 46
  • DOI: 10.1039/C7TA01812F

Self-organized formation of topologically correct feature maps
journal, January 1982


The atomic simulation environment—a Python library for working with atoms
journal, June 2017

  • Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 27
  • DOI: 10.1088/1361-648X/aa680e

Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors
journal, October 2015


Statistical Inference for Probabilistic Functions of Finite State Markov Chains
journal, December 1966

  • Baum, Leonard E.; Petrie, Ted
  • The Annals of Mathematical Statistics, Vol. 37, Issue 6
  • DOI: 10.1214/aoms/1177699147

The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen
journal, January 1958

  • Parsons, Roger
  • Transactions of the Faraday Society, Vol. 54, p. 1053-1063
  • DOI: 10.1039/tf9585401053

Further considerations on the thermodynamics of chemical equilibria and reaction rates
journal, January 1936


AiiDA: automated interactive infrastructure and database for computational science
journal, January 2016


Why Is Bulk Thermochemistry a Good Descriptor for the Electrocatalytic Activity of Transition Metal Oxides?
journal, January 2015

  • Calle-Vallejo, Federico; Díaz-Morales, Oscar A.; Kolb, Manuel J.
  • ACS Catalysis, Vol. 5, Issue 2
  • DOI: 10.1021/cs5016657

Orbitalwise Coordination Number for Predicting Adsorption Properties of Metal Nanocatalysts
journal, January 2017


Comparing partitions
journal, December 1985

  • Hubert, Lawrence; Arabie, Phipps
  • Journal of Classification, Vol. 2, Issue 1
  • DOI: 10.1007/BF01908075

Atomic-position independent descriptor for machine learning of material properties
journal, December 2018


Selective methanation of CO over supported Ru catalysts
journal, May 2009

  • Panagiotopoulou, Paraskevi; Kondarides, Dimitris I.; Verykios, Xenophon. E.
  • Applied Catalysis B: Environmental, Vol. 88, Issue 3-4
  • DOI: 10.1016/j.apcatb.2008.10.012

Materials Data Science: Current Status and Future Outlook
journal, July 2015


International chemical identifier for reactions (RInChI)
journal, May 2018


How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis
journal, August 1998


CatApp: A Web Application for Surface Chemistry and Heterogeneous Catalysis
journal, December 2011

  • Hummelshøj, Jens S.; Abild-Pedersen, Frank; Studt, Felix
  • Angewandte Chemie International Edition, Vol. 51, Issue 1
  • DOI: 10.1002/anie.201107947

Prediction of Adsorption Energies for Chemical Species on Metal Catalyst Surfaces Using Machine Learning
journal, November 2018

  • Chowdhury, Asif J.; Yang, Wenqiang; Walker, Eric
  • The Journal of Physical Chemistry C, Vol. 122, Issue 49
  • DOI: 10.1021/acs.jpcc.8b09284

Predicting the Thermodynamic Stability of Solids Combining Density Functional Theory and Machine Learning
journal, May 2017


Computational Design Principles of Two-Center First-Row Transition Metal Oxide Oxygen Evolution Catalysts
journal, July 2017

  • Mavros, Michael G.; Shepherd, James J.; Tsuchimochi, Takashi
  • The Journal of Physical Chemistry C, Vol. 121, Issue 29
  • DOI: 10.1021/acs.jpcc.7b02424

Identifying optimal active sites for heterogeneous catalysis by metal alloys based on molecular descriptors and electronic structure engineering
journal, August 2013

  • Holewinski, Adam; Xin, Hongliang; Nikolla, Eranda
  • Current Opinion in Chemical Engineering, Vol. 2, Issue 3
  • DOI: 10.1016/j.coche.2013.04.006

On-the-Fly Machine Learning of Atomic Potential in Density Functional Theory Structure Optimization
journal, January 2018


Machine learning bandgaps of double perovskites
journal, January 2016

  • Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19375

Structural Relaxation Made Simple
journal, October 2006


Electrostatic Origins of Linear Scaling Relationships at Bifunctional Metal/Oxide Interfaces: A Case Study of Au Nanoparticles on Doped MgO Substrates
journal, October 2018

  • Choksi, Tej; Majumdar, Paulami; Greeley, Jeffrey P.
  • Angewandte Chemie International Edition, Vol. 57, Issue 47
  • DOI: 10.1002/anie.201808246

Knowledge extraction for water gas shift reaction over noble metal catalysts from publications in the literature between 2002 and 2012
journal, April 2014

  • Odabaşı, Çağla; Günay, M. Erdem; Yıldırım, Ramazan
  • International Journal of Hydrogen Energy, Vol. 39, Issue 11
  • DOI: 10.1016/j.ijhydene.2014.01.160

Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry
journal, October 2018

  • Bartel, Christopher J.; Millican, Samantha L.; Deml, Ann M.
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06682-4

Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO 2 Reduction
journal, August 2017


Creating Machine Learning-Driven Material Recipes Based on Crystal Structure
journal, January 2019


MatCALO: Knowledge-enabled machine learning in materials science
journal, June 2019


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Structure-Sensitive Scaling Relations: Adsorption Energies from Surface Site Stability
journal, March 2018


Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces
journal, July 2007


Representation of compounds for machine-learning prediction of physical properties
journal, April 2017


Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms
journal, July 1997

  • Wales, David J.; Doye, Jonathan P. K.
  • The Journal of Physical Chemistry A, Vol. 101, Issue 28
  • DOI: 10.1021/jp970984n

Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013


Automated Discovery and Construction of Surface Phase Diagrams Using Machine Learning
journal, September 2016

  • Ulissi, Zachary W.; Singh, Aayush R.; Tsai, Charlie
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 19
  • DOI: 10.1021/acs.jpclett.6b01254

Molecular Geometry Optimization with a Genetic Algorithm
journal, July 1995


Chemisorption phenomena: Analytic modeling based on perturbation theory and bond-order conservation
journal, July 1986


Machine learning hydrogen adsorption on nanoclusters through structural descriptors
journal, July 2018

  • Jäger, Marc O. J.; Morooka, Eiaki V.; Federici Canova, Filippo
  • npj Computational Materials, Vol. 4, Issue 1
  • DOI: 10.1038/s41524-018-0096-5

Active Learning
journal, June 2012


AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
journal, June 2012


Fast Prediction of Adsorption Properties for Platinum Nanocatalysts with Generalized Coordination Numbers
journal, June 2014

  • Calle-Vallejo, Federico; Martínez, José I.; García-Lastra, Juan M.
  • Angewandte Chemie International Edition, Vol. 53, Issue 32
  • DOI: 10.1002/anie.201402958

Acceleration of saddle-point searches with machine learning
journal, August 2016

  • Peterson, Andrew A.
  • The Journal of Chemical Physics, Vol. 145, Issue 7
  • DOI: 10.1063/1.4960708

Optimal design of an ammonia synthesis reactor using genetic algorithms
journal, September 1997


Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy
journal, November 2018


AFLOW-ML: A RESTful API for machine-learning predictions of materials properties
journal, September 2018


Phase diagram calculation: past, present and future
journal, January 2004


The Cambridge Structural Database: a quarter of a million crystal structures and rising
journal, May 2002


Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution
journal, September 2018


Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Coordination numbers for unraveling intrinsic size effects in gold-catalyzed CO oxidation
journal, January 2018

  • Wang, Siwen; Omidvar, Noushin; Marx, Emily
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 9
  • DOI: 10.1039/C8CP00102B

Random Forests
journal, January 2001


Combinatorial screening for new materials in unconstrained composition space with machine learning
journal, March 2014


An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces
journal, March 2019


On Benchmarking of Automated Methods for Performing Exhaustive Reaction Path Search
journal, March 2019

  • Maeda, Satoshi; Harabuchi, Yu
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 4
  • DOI: 10.1021/acs.jctc.8b01182