DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure-dependent performance of TiO2/C as anode material for Na-ion batteries

Abstract

The performance of energy storage materials is highly dependent on their nanostructures. Herein, hierarchical rod-in-tube TiO2 with a uniform carbon coating is synthesized as the anode material for sodium-ion batteries by a facile solvothermal method. This unique structure consists of a tunable nanorod core, interstitial hollow spaces, and a functional nanotube shell assembled from two-dimensional nanosheets. By adjusting the types of solvents used and reaction time, the morphologies of TiO2/C composites can be tuned to nanoparticles, microrods, rod-in-tube structures, or microtubes. Among these materials, rod-in-tube TiO2 with a uniform carbon coating shows the highest electronic conductivity, specific surface area (336.4 m2 g-1), and porosity, and these factors lead to the best sodium storage capability. Benefiting from the unique structural features and improved electronic/ionic conductivity, the as-obtained rod-in-tube TiO2/C in coin cell tests exhibits a high discharge capacity of 277.5 and 153.9 mAh g-1 at 50 and 5000 mA g-1, respectively, and almost 100% capacity retention over 14,000 cycles at 5000 mA g-1. In operando high-energy X-ray diffraction further confirms the stable crystal structure of the rod-in-tube TiO2/C during Na+ insertion/extraction. Finally, this work highlights that nanostructure design is an effective strategy to achieve advanced energy storage materials.

Authors:
 [1];  [1];  [2];  [3];  [4];  [5];  [5];  [1];  [6];  [7]
  1. Central South Univ., Changsha (China). Hunan Provincial Key Lab. of Chemical Power Sources, College of Chemistry and Chemical Engineering
  2. Central South Univ., Changsha (China). Hunan Provincial Key Lab. of Chemical Power Sources, College of Chemistry and Chemical Engineering; Hong Kong Univ. of Science and Technology, Hong Kong (China). Dept. of Chemical and Biological Engineering
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS), X-ray Science Division
  5. Hong Kong Univ. of Science and Technology, Hong Kong (China). Dept. of Chemical and Biological Engineering
  6. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division; Stanford Univ., CA (United States). Materials Science and Engineering
  7. Hong Kong Univ. of Science and Technology, Hong Kong (China). Dept. of Chemical and Biological Engineering, and Energy Inst.
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Natural Science Foundation of China (NSFC); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE
OSTI Identifier:
1422570
Alternate Identifier(s):
OSTI ID: 1548948
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 44; Journal Issue: C; Journal ID: ISSN 2211-2855
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; hierarchical rod-in-tube structure; morphology tuning; rate performance; sodium-ion battery; titanium dioxide

Citation Formats

He, Hanna, Gan, Qingmeng, Wang, Haiyan, Xu, Gui-Liang, Zhang, Xiaoyi, Huang, Dan, Fu, Fang, Tang, Yougen, Amine, Khalil, and Shao, Minhua. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. United States: N. p., 2017. Web. doi:10.1016/j.nanoen.2017.11.077.
He, Hanna, Gan, Qingmeng, Wang, Haiyan, Xu, Gui-Liang, Zhang, Xiaoyi, Huang, Dan, Fu, Fang, Tang, Yougen, Amine, Khalil, & Shao, Minhua. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. United States. https://doi.org/10.1016/j.nanoen.2017.11.077
He, Hanna, Gan, Qingmeng, Wang, Haiyan, Xu, Gui-Liang, Zhang, Xiaoyi, Huang, Dan, Fu, Fang, Tang, Yougen, Amine, Khalil, and Shao, Minhua. Wed . "Structure-dependent performance of TiO2/C as anode material for Na-ion batteries". United States. https://doi.org/10.1016/j.nanoen.2017.11.077. https://www.osti.gov/servlets/purl/1422570.
@article{osti_1422570,
title = {Structure-dependent performance of TiO2/C as anode material for Na-ion batteries},
author = {He, Hanna and Gan, Qingmeng and Wang, Haiyan and Xu, Gui-Liang and Zhang, Xiaoyi and Huang, Dan and Fu, Fang and Tang, Yougen and Amine, Khalil and Shao, Minhua},
abstractNote = {The performance of energy storage materials is highly dependent on their nanostructures. Herein, hierarchical rod-in-tube TiO2 with a uniform carbon coating is synthesized as the anode material for sodium-ion batteries by a facile solvothermal method. This unique structure consists of a tunable nanorod core, interstitial hollow spaces, and a functional nanotube shell assembled from two-dimensional nanosheets. By adjusting the types of solvents used and reaction time, the morphologies of TiO2/C composites can be tuned to nanoparticles, microrods, rod-in-tube structures, or microtubes. Among these materials, rod-in-tube TiO2 with a uniform carbon coating shows the highest electronic conductivity, specific surface area (336.4 m2 g-1), and porosity, and these factors lead to the best sodium storage capability. Benefiting from the unique structural features and improved electronic/ionic conductivity, the as-obtained rod-in-tube TiO2/C in coin cell tests exhibits a high discharge capacity of 277.5 and 153.9 mAh g-1 at 50 and 5000 mA g-1, respectively, and almost 100% capacity retention over 14,000 cycles at 5000 mA g-1. In operando high-energy X-ray diffraction further confirms the stable crystal structure of the rod-in-tube TiO2/C during Na+ insertion/extraction. Finally, this work highlights that nanostructure design is an effective strategy to achieve advanced energy storage materials.},
doi = {10.1016/j.nanoen.2017.11.077},
journal = {Nano Energy},
number = C,
volume = 44,
place = {United States},
year = {Wed Dec 06 00:00:00 EST 2017},
month = {Wed Dec 06 00:00:00 EST 2017}
}

Journal Article:

Citation Metrics:
Cited by: 183 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries
journal, August 2015


Engraving Copper Foil to Give Large-Scale Binder-Free Porous CuO Arrays for a High-Performance Sodium-Ion Battery Anode
journal, January 2014

  • Yuan, Shuang; Huang, Xiao-lei; Ma, De-long
  • Advanced Materials, Vol. 26, Issue 14
  • DOI: 10.1002/adma.201304469

3D Graphene Decorated NaTi 2 (PO 4 ) 3 Microspheres as a Superior High-Rate and Ultracycle-Stable Anode Material for Sodium Ion Batteries
journal, June 2016

  • Fang, Yongjin; Xiao, Lifen; Qian, Jiangfeng
  • Advanced Energy Materials, Vol. 6, Issue 19
  • DOI: 10.1002/aenm.201502197

Amorphous TiO 2 Nanotube Anode for Rechargeable Sodium Ion Batteries
journal, September 2011

  • Xiong, Hui; Slater, Michael D.; Balasubramanian, Mahalingam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 20
  • DOI: 10.1021/jz2012066

Graphene-Modified TiO 2 Microspheres Synthesized by a Facile Spray-Drying Route for Enhanced Sodium-Ion Storage
journal, January 2016

  • Zhu, Xiaoming; Li, Qian; Fang, Yongjin
  • Particle & Particle Systems Characterization, Vol. 33, Issue 8
  • DOI: 10.1002/ppsc.201500216

Anatase TiO 2 : Better Anode Material Than Amorphous and Rutile Phases of TiO 2 for Na-Ion Batteries
journal, August 2015


Iron-Doped Cauliflower-Like Rutile TiO 2 with Superior Sodium Storage Properties
journal, February 2017

  • He, Hanna; Sun, Dan; Zhang, Qi
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 7
  • DOI: 10.1021/acsami.6b15516

Nb-Doped Rutile TiO 2 : a Potential Anode Material for Na-Ion Battery
journal, March 2015

  • Usui, Hiroyuki; Yoshioka, Sho; Wasada, Kuniaki
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 12
  • DOI: 10.1021/am508670z

Nanocrystalline TiO 2 (B) as Anode Material for Sodium-Ion Batteries
journal, December 2014

  • Wu, Liming; Bresser, Dominic; Buchholz, Daniel
  • Journal of The Electrochemical Society, Vol. 162, Issue 2
  • DOI: 10.1149/2.0091502jes

 A New Concept for Obtaining SnO 2 Fiber-in-Tube Nanostructures with Superior Electrochemical Properties
journal, November 2014

  • Hong, Young Jun; Yoon, Ji-Wook; Lee, Jong-Heun
  • Chemistry - A European Journal, Vol. 21, Issue 1
  • DOI: 10.1002/chem.201405146

Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries
journal, January 2015

  • Wu, Lin; Lu, Haiyan; Xiao, Lifen
  • Journal of Materials Chemistry A, Vol. 3, Issue 10
  • DOI: 10.1039/C4TA06086E

Size-Tunable Olive-Like Anatase TiO 2 Coated with Carbon as Superior Anode for Sodium-Ion Batteries
journal, August 2016


Anatase TiO 2 nanocubes for fast and durable sodium ion battery anodes
journal, January 2015

  • Yang, Xuming; Wang, Chao; Yang, Yingchang
  • Journal of Materials Chemistry A, Vol. 3, Issue 16
  • DOI: 10.1039/C5TA00614G

Ti 3+ Self-Doped Dark Rutile TiO 2 Ultrafine Nanorods with Durable High-Rate Capability for Lithium-Ion Batteries
journal, October 2015

  • Chen, Jun; Song, Weixin; Hou, Hongshuai
  • Advanced Functional Materials, Vol. 25, Issue 43
  • DOI: 10.1002/adfm.201502978

Anatase TiO2 nanoparticles for high power sodium-ion anodes
journal, April 2014


TiO 2 -B nanowire arrays coated with layered MoS 2 nanosheets for lithium and sodium storage
journal, January 2016

  • Liao, Jin-Yun; Luna, Brandon. De; Manthiram, Arumugam
  • Journal of Materials Chemistry A, Vol. 4, Issue 3
  • DOI: 10.1039/C5TA07064C

Boron-Doped Anatase TiO 2 as a High-Performance Anode Material for Sodium-Ion Batteries
journal, June 2016

  • Wang, Baofeng; Zhao, Fei; Du, Guodong
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 25
  • DOI: 10.1021/acsami.6b03270

Nb-Doped Rutile TiO 2 Mesocrystals with Enhanced Lithium Storage Properties for Lithium Ion Battery
journal, March 2017

  • Lan, Tongbin; Zhang, Weifeng; Wu, Nae-Lih
  • Chemistry - A European Journal, Vol. 23, Issue 21
  • DOI: 10.1002/chem.201605115

Semiconductor Nanowires for Energy Conversion
journal, January 2010

  • Hochbaum, Allon I.; Yang, Peidong
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900075v

Double-Walled Sb@TiO 2−x Nanotubes as a Superior High-Rate and Ultralong-Lifespan Anode Material for Na-Ion and Li-Ion Batteries
journal, February 2016


Fabrication of Spinel One-Dimensional Architectures by Single-Spinneret Electrospinning for Energy Storage Applications
journal, January 2015

  • Peng, Shengjie; Li, Linlin; Hu, Yuxiang
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn506851x

General Formation of Complex Tubular Nanostructures of Metal Oxides for the Oxygen Reduction Reaction and Lithium-Ion Batteries
journal, July 2013

  • Zhang, Genqiang; Xia, Bao Yu; Xiao, Chong
  • Angewandte Chemie International Edition, Vol. 52, Issue 33
  • DOI: 10.1002/anie.201304355

Grain size effects on the transport properties of Li3V2(PO4)3 glass–ceramic nanocomposites for lithium cathode batteries
journal, January 2016

  • Al-Syadi, A. M.; Al-Assiri, M. S.; Hassan, Hassan M. A.
  • Journal of Materials Science: Materials in Electronics, Vol. 27, Issue 4
  • DOI: 10.1007/s10854-015-4266-7

Gray TiO 2 Nanowires Synthesized by Aluminum-Mediated Reduction and Their Excellent Photocatalytic Activity for Water Cleaning
journal, September 2013

  • Yin, Hao; Lin, Tianquan; Yang, Chongyin
  • Chemistry - A European Journal, Vol. 19, Issue 40
  • DOI: 10.1002/chem.201302286

Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior
journal, September 2016


N-doped rutile TiO 2 /C with significantly enhanced Na storage capacity for Na-ion batteries
journal, May 2017


Pinecone-like hierarchical anatase TiO 2 bonded with carbon enabling ultrahigh cycling rates for sodium storage
journal, January 2016

  • Chen, Jun; Zou, Guoqiang; Hou, Hongshuai
  • Journal of Materials Chemistry A, Vol. 4, Issue 32
  • DOI: 10.1039/C6TA03505A

Nanoporous Anatase TiO 2 Mesocrystals: Additive-Free Synthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior
journal, February 2011

  • Ye, Jianfeng; Liu, Wen; Cai, Jinguang
  • Journal of the American Chemical Society, Vol. 133, Issue 4
  • DOI: 10.1021/ja108205q

Self-assembled nanoporous rutile TiO2 mesocrystals with tunable morphologies for high rate lithium-ion batteries
journal, May 2012


Additive-free synthesis of unique TiO 2 mesocrystals with enhanced lithium-ion intercalation properties
journal, January 2012

  • Hong, Zhensheng; Wei, Mingdeng; Lan, Tongbin
  • Energy Environ. Sci., Vol. 5, Issue 1
  • DOI: 10.1039/C1EE02551A

Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling
journal, April 2015

  • Chen, Chaoji; Wen, Yanwei; Hu, Xianluo
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7929

Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles
journal, January 2013

  • Yan, Yong; Hao, Bo; Wang, Dong
  • Journal of Materials Chemistry A, Vol. 1, Issue 46
  • DOI: 10.1039/c3ta13491a

Hierarchical tubular structures constructed from ultrathin TiO 2 (B) nanosheets for highly reversible lithium storage
journal, January 2015

  • Hu, Han; Yu, Le; Gao, Xuehui
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C5EE00101C

Metal Oxide Hollow Nanostructures for Lithium-ion Batteries
journal, March 2012

  • Wang, Zhiyu; Zhou, Liang; David Lou, Xiong Wen
  • Advanced Materials, Vol. 24, Issue 14, p. 1903-1911
  • DOI: 10.1002/adma.201200469

Self-Assembled TiO 2 –Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion
journal, March 2009

  • Wang, Donghai; Choi, Daiwon; Li, Juan
  • ACS Nano, Vol. 3, Issue 4, p. 907-914
  • DOI: 10.1021/nn900150y

Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity
journal, July 2007

  • Li, Hexing; Bian, Zhenfeng; Zhu, Jian
  • Journal of the American Chemical Society, Vol. 129, Issue 27
  • DOI: 10.1021/ja072191c

Capturing Heterogeneous Nucleation of Nanoscale Pits and Subsequent Crystal Shrinkage during Ostwald Ripening of a Metal Phosphate
journal, January 2015

  • Chung, Sung-Yoon; Kim, Young-Min; Choi, Si-Young
  • ACS Nano, Vol. 9, Issue 1
  • DOI: 10.1021/nn505247s

One-Step Synthesis of Hierarchical SnO 2 Hollow Nanostructures via Self-Assembly for High Power Lithium Ion Batteries
journal, April 2010

  • Yin, Xiao Ming; Li, Cheng Chao; Zhang, Ming
  • The Journal of Physical Chemistry C, Vol. 114, Issue 17
  • DOI: 10.1021/jp100224x

Unfolding the Mechanism of Sodium Insertion in Anatase TiO 2 Nanoparticles
journal, August 2014

  • Wu, Liming; Bresser, Dominic; Buchholz, Daniel
  • Advanced Energy Materials, Vol. 5, Issue 2
  • DOI: 10.1002/aenm.201401142

Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies
journal, March 2016

  • Chen, Jun; Ding, Zhiying; Wang, Chao
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 14
  • DOI: 10.1021/acsami.6b01183

Scalable synthesis and superior performance of TiO2-reduced graphene oxide composite anode for sodium-ion batteries
journal, October 2015


TiO 2 /carbon hollow spheres as anode materials for advanced sodium ion batteries
journal, October 2015


Aqueous rechargeable lithium batteries using NaV 6 O 15 nanoflakes as high performance anodes
journal, January 2014

  • Sun, Dan; Jin, Guanhua; Wang, Haiyan
  • J. Mater. Chem. A, Vol. 2, Issue 32
  • DOI: 10.1039/C4TA01675K

Self-Supported Nanotube Arrays of Sulfur-Doped TiO 2 Enabling Ultrastable and Robust Sodium Storage
journal, January 2016


Works referencing / citing this record:

2D Nanospace Confined Synthesis of Pseudocapacitance-Dominated MoS 2 -in-Ti 3 C 2 Superstructure for Ultrafast and Stable Li/Na-Ion Batteries
journal, August 2018

  • Ma, Kun; Jiang, Hao; Hu, Yanjie
  • Advanced Functional Materials, Vol. 28, Issue 40
  • DOI: 10.1002/adfm.201804306

3D ordered mesoporous TiO 2 @CMK-3 nanostructure for sodium-ion batteries with long-term and high-rate performance
journal, March 2019


Double Perovskite LaFe x Ni 1− x O 3 Nanorods Enable Efficient Oxygen Evolution Electrocatalysis
journal, January 2019

  • Wang, Huaping; Wang, Juan; Pi, Yecan
  • Angewandte Chemie International Edition, Vol. 58, Issue 8
  • DOI: 10.1002/anie.201812545

Vanadium-based nanowires for sodium-ion batteries
journal, February 2019


Comprehensive New Insights and Perspectives into Ti-Based Anodes for Next-Generation Alkaline Metal (Na + , K + ) Ion Batteries
journal, August 2018


Three‐Dimensional Porous CoFe 2 O 4 /Graphene Composite for Highly Stable Sodium‐Ion Batteries
journal, January 2019


The Three‐Dimensional Dendrite‐Free Zinc Anode on a Copper Mesh with a Zinc‐Oriented Polyacrylamide Electrolyte Additive
journal, September 2019


Engineering Solid Electrolyte Interphase for Pseudocapacitive Anatase TiO 2 Anodes in Sodium-Ion Batteries
journal, May 2018

  • Xu, Zheng-Long; Lim, Kyungmi; Park, Kyu-Young
  • Advanced Functional Materials, Vol. 28, Issue 29
  • DOI: 10.1002/adfm.201802099

Double Perovskite LaFe x Ni 1− x O 3 Nanorods Enable Efficient Oxygen Evolution Electrocatalysis
journal, January 2019


Ti 3 C 2 : An Ideal Co‐catalyst?
journal, December 2019


Adjusting the yolk–shell structure of carbon spheres to boost the capacitive K + storage ability
journal, January 2018

  • Zhang, Hehe; He, Hanna; Luan, Jingyi
  • Journal of Materials Chemistry A, Vol. 6, Issue 46
  • DOI: 10.1039/c8ta07438k

Ti-based electrode materials for electrochemical sodium ion storage and removal
journal, January 2019

  • Zhai, Haifa; Xia, Bao Yu; Park, Ho Seok
  • Journal of Materials Chemistry A, Vol. 7, Issue 39
  • DOI: 10.1039/c9ta06713b

Ti 3 C 2 : An Ideal Co‐catalyst?
journal, January 2020

  • Wang, Biao; Wang, Mengye; Liu, Fangyan
  • Angewandte Chemie International Edition, Vol. 59, Issue 5
  • DOI: 10.1002/anie.201913095

Two-step carbon modification of NaTi2(PO4)3 with improved sodium storage performance for Na-ion batteries
journal, October 2018


High Volumetric Quasi-Solid-State Sodium-Ion Capacitor under High Mass Loading Conditions
journal, July 2018

  • Thangavel, Ranjith; Kannan, Aravindaraj G.; Ponraj, Rubha
  • Advanced Materials Interfaces, Vol. 5, Issue 19
  • DOI: 10.1002/admi.201800472

Facile preparation of robust porous MoS2/C nanosheet networks as anode material for sodium ion batteries
journal, October 2018


Plasma-Induced Amorphous Shell and Deep Cation-Site S Doping Endow TiO 2 with Extraordinary Sodium Storage Performance
journal, May 2018


TiO 2 nanocrystals embedded in sulfur-doped porous carbon as high-performance and long-lasting anode materials for sodium-ion batteries
journal, January 2018

  • Li, Junfeng; Zhang, Xiaojie; Han, Lu
  • Journal of Materials Chemistry A, Vol. 6, Issue 47
  • DOI: 10.1039/c8ta05617j

Phosphorus Doped Multi-Walled Carbon Nanotubes: An Excellent Electrocatalyst for the VO 2+ /VO 2 + Redox Reaction
journal, July 2018


Fabrication of double-shell hollow NiO@N-C nanotubes for a high-performance supercapacitor
journal, January 2019

  • Zhang, Lulu; Song, Xiumei; Tan, Lichao
  • New Journal of Chemistry, Vol. 43, Issue 34
  • DOI: 10.1039/c9nj02626f

The Three‐Dimensional Dendrite‐Free Zinc Anode on a Copper Mesh with a Zinc‐Oriented Polyacrylamide Electrolyte Additive
journal, September 2019

  • Zhang, Qi; Luan, Jingyi; Fu, Liang
  • Angewandte Chemie International Edition, Vol. 58, Issue 44
  • DOI: 10.1002/anie.201907830

Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries
journal, June 2019


MoO 3 nanosheet arrays as superior anode materials for Li- and Na-ion batteries
journal, January 2018


Flexible Freestanding Carbon Nanofiber-Embedded TiO 2 Nanoparticles as Anode Material for Sodium-Ion Batteries
journal, November 2018


Porous lithium titanate nanosheets as an advanced anode material for sodium ion batteries
journal, December 2019


Reviving bulky MoS 2 as an advanced anode for lithium-ion batteries
journal, January 2019

  • Li, Shicai; Liu, Ping; Huang, Xiaobing
  • Journal of Materials Chemistry A, Vol. 7, Issue 18
  • DOI: 10.1039/c9ta01089k

Sulfonated Carbon Nanotubes as Superior Catalysts towards V 3+ /V 2+ Redox Reaction for Vanadium Redox Flow Battery
journal, January 2018

  • He, Zhangxing; Cheng, Gang; Jiang, Yingqiao
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0751805jes

Electrolytes and Electrolyte/Electrode Interfaces in Sodium‐Ion Batteries: From Scientific Research to Practical Application
journal, March 2019


Plasma‐Enabled Ternary SnO 2 @Sn/Nitrogen‐Doped Graphene Aerogel Anode for Sodium‐Ion Batteries
journal, March 2020


The surface capacitance behavior and its contribution to the excellent performance of cobalt ferrite/carbon anode in lithium storage
journal, June 2019

  • Li, Yuzhu; Meng, Yanshuang; Xiao, Mingjun
  • Journal of Materials Science: Materials in Electronics, Vol. 30, Issue 13
  • DOI: 10.1007/s10854-019-01629-x

Building highly stable and industrial NaVPO 4 F/C as bipolar electrodes for high-rate symmetric rechargeable sodium-ion full batteries
journal, January 2019

  • Chen, Chengcheng; Li, Tianjiao; Tian, Han
  • Journal of Materials Chemistry A, Vol. 7, Issue 31
  • DOI: 10.1039/c9ta05396d

Flexible Freestanding Carbon Nanofiber-Embedded TiO 2 Nanoparticles as Anode Material for Sodium-Ion Batteries
journal, November 2018