skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Boosting Sodium Storage in TiO 2 Nanotube Arrays through Surface Phosphorylation

Abstract

In this paper, sodium–ion batteries (SIBs) offer a promise of a scalable, low–cost, and environmentally benign means of renewable energy storage. However, the low capacity and poor rate capability of anode materials present an unavoidable challenge. In this work, it is demonstrated that surface phosphorylated TiO 2 nanotube arrays grown on Ti substrate can be efficient anode materials for SIBs. Fabrication of the phosphorylated nanoarray film is based on the electrochemical anodization of Ti metal in NH 4F solution and subsequent phosphorylation using sodium hypophosphite. The phosphorylated TiO 2 nanotube arrays afford a reversible capacity of 334 mA h g –1 at 67 mA g –1, a superior rate capability of 147 mA h g –1 at 3350 mA g –1, and a stable cycle performance up to 1000 cycles. In situ X–ray diffraction and transmission electron microscopy reveal the near–zero strain response and robust mechanical behavior of the TiO 2 host upon (de)sodiation, suggesting its excellent structural stability in the Na+ storage application.

Authors:
 [1];  [1];  [2];  [2];  [1];  [1];  [2]
  1. Soochow Univ., Suzhou (People's Republic of China)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Natural Science Foundation of China (NNSFC); National Natural Science Foundation of Jiangsu Province; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1466313
Alternate Identifier(s):
OSTI ID: 1415500
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 6; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; sodium storage; sodium-ion batteries; surface functionalization; titanium dioxide

Citation Formats

Ni, Jiangfeng, Fu, Shidong, Yuan, Yifei, Ma, Lu, Jiang, Yu, Li, Liang, and Lu, Jun. Boosting Sodium Storage in TiO2 Nanotube Arrays through Surface Phosphorylation. United States: N. p., 2018. Web. doi:10.1002/adma.201704337.
Ni, Jiangfeng, Fu, Shidong, Yuan, Yifei, Ma, Lu, Jiang, Yu, Li, Liang, & Lu, Jun. Boosting Sodium Storage in TiO2 Nanotube Arrays through Surface Phosphorylation. United States. doi:10.1002/adma.201704337.
Ni, Jiangfeng, Fu, Shidong, Yuan, Yifei, Ma, Lu, Jiang, Yu, Li, Liang, and Lu, Jun. Wed . "Boosting Sodium Storage in TiO2 Nanotube Arrays through Surface Phosphorylation". United States. doi:10.1002/adma.201704337. https://www.osti.gov/servlets/purl/1466313.
@article{osti_1466313,
title = {Boosting Sodium Storage in TiO2 Nanotube Arrays through Surface Phosphorylation},
author = {Ni, Jiangfeng and Fu, Shidong and Yuan, Yifei and Ma, Lu and Jiang, Yu and Li, Liang and Lu, Jun},
abstractNote = {In this paper, sodium–ion batteries (SIBs) offer a promise of a scalable, low–cost, and environmentally benign means of renewable energy storage. However, the low capacity and poor rate capability of anode materials present an unavoidable challenge. In this work, it is demonstrated that surface phosphorylated TiO2 nanotube arrays grown on Ti substrate can be efficient anode materials for SIBs. Fabrication of the phosphorylated nanoarray film is based on the electrochemical anodization of Ti metal in NH4F solution and subsequent phosphorylation using sodium hypophosphite. The phosphorylated TiO2 nanotube arrays afford a reversible capacity of 334 mA h g–1 at 67 mA g–1, a superior rate capability of 147 mA h g–1 at 3350 mA g–1, and a stable cycle performance up to 1000 cycles. In situ X–ray diffraction and transmission electron microscopy reveal the near–zero strain response and robust mechanical behavior of the TiO2 host upon (de)sodiation, suggesting its excellent structural stability in the Na+ storage application.},
doi = {10.1002/adma.201704337},
journal = {Advanced Materials},
number = 6,
volume = 30,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1. Figure 1.: Synthesis and characterization of P-TiO2 nanotube array grown on Ti substrate. (a) Schematic of synthesizing P-TiO2 nanoarray. TiO2 nanoarray was first electrochemically grown on Ti substrate (I), and then phosphorylated to P-TiO2 (II). (b) XRD pattern of TiO2 and P-TiO2 nanoarrays. SEM images of (c) TiO2 and (d)more » P-TiO2 nanoarrays. (e, f) TEM image of P-TiO2 nanotubes. Lattice fringe spacing of 0.352 nm corresponds the (101) facets of anatase TiO2. Disordered area near surface is indicated by arrows. (g) SAED of P-TiO2 nanoarray.« less

Save / Share:

Works referenced in this record:

Amorphous TiO 2 Nanotube Anode for Rechargeable Sodium Ion Batteries
journal, September 2011

  • Xiong, Hui; Slater, Michael D.; Balasubramanian, Mahalingam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 20
  • DOI: 10.1021/jz2012066

Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries
journal, June 2017


Dynamic study of (De)sodiation in alpha-MnO2 nanowires
journal, January 2016


Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries
journal, January 2014

  • Kim, Ki-Tae; Ali, Ghulam; Chung, Kyung Yoon
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl402747x

Lithium Insertion in Nanostructured TiO 2 (B) Architectures
journal, June 2012

  • Dylla, Anthony G.; Henkelman, Graeme; Stevenson, Keith J.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300176y

Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium
journal, January 2014

  • González, José R.; Alcántara, Ricardo; Nacimiento, Francisco
  • CrystEngComm, Vol. 16, Issue 21
  • DOI: 10.1039/C4CE00272E

State-of-the-art characterization techniques for advanced lithium-ion batteries
journal, March 2017


Tin Nanodots Encapsulated in Porous Nitrogen-Doped Carbon Nanofibers as a Free-Standing Anode for Advanced Sodium-Ion Batteries
journal, September 2015


Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase
journal, July 2002

  • Wagemaker, M.; Kentgens, A. P. M.; Mulder, F. M.
  • Nature, Vol. 418, Issue 6896
  • DOI: 10.1038/nature00901

Boosted Charge Transfer in SnS/SnO 2 Heterostructures: Toward High Rate Capability for Sodium-Ion Batteries
journal, February 2016

  • Zheng, Yang; Zhou, Tengfei; Zhang, Chaofeng
  • Angewandte Chemie International Edition, Vol. 55, Issue 10
  • DOI: 10.1002/anie.201510978

Effect of the P/Ti Ratio on the Visible-Light Photocatalytic Activity of P-Doped TiO 2
journal, September 2009

  • Li, Fangfei; Jiang, Yinshan; Xia, Maosheng
  • The Journal of Physical Chemistry C, Vol. 113, Issue 42
  • DOI: 10.1021/jp902558z

Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries
journal, January 2013


High-rate lithium storage of anatase TiO2 crystals doped with both nitrogen and sulfur
journal, January 2013

  • Jiao, Wei; Li, Na; Wang, Lianzhou
  • Chemical Communications, Vol. 49, Issue 33
  • DOI: 10.1039/c3cc40568k

Nanoarchitectured Array Electrodes for Rechargeable Lithium- and Sodium-Ion Batteries
journal, March 2016


Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure, Composition, and Nanoarchitecture
journal, December 2016


Highly Ordered Three-Dimensional Ni-TiO 2 Nanoarrays as Sodium Ion Battery Anodes
journal, June 2015


Unfolding the Mechanism of Sodium Insertion in Anatase TiO 2 Nanoparticles
journal, August 2014

  • Wu, Liming; Bresser, Dominic; Buchholz, Daniel
  • Advanced Energy Materials, Vol. 5, Issue 2
  • DOI: 10.1002/aenm.201401142

High Electrochemical Performances of Microsphere C-TiO 2 Anode for Sodium-Ion Battery
journal, June 2014

  • Oh, Seung-Min; Hwang, Jang-Yeon; Yoon, C. S.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 14
  • DOI: 10.1021/am501772a

Dual-Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiber-Shaped Asymmetric Supercapacitors and Microbial Fuel Cells
journal, April 2016

  • Yu, Minghao; Cheng, Xinyu; Zeng, Yinxiang
  • Angewandte Chemie International Edition, Vol. 55, Issue 23
  • DOI: 10.1002/anie.201602631

Synthesis and Characterization of Phosphated Mesoporous Titanium Dioxide with High Photocatalytic Activity
journal, June 2003

  • Yu, Jimmy C.; Zhang, Lizhi; Zheng, Zhi
  • Chemistry of Materials, Vol. 15, Issue 11
  • DOI: 10.1021/cm0340781

Superior Electrochemical Performance and Storage Mechanism of Na 3 V 2 (PO 4 ) 3 Cathode for Room-Temperature Sodium-Ion Batteries
journal, October 2012


Multifunctional P-Doped TiO 2 Films: A New Approach to Self-Cleaning, Transparent Conducting Oxide Materials
journal, April 2015

  • Sotelo-Vazquez, Carlos; Noor, Nuruzzaman; Kafizas, Andreas
  • Chemistry of Materials, Vol. 27, Issue 9
  • DOI: 10.1021/cm504734a

Hydrogenation Driven Conductive Na 2 Ti 3 O 7 Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries
journal, June 2016


Sodium-Ion Batteries
journal, May 2012

  • Slater, Michael D.; Kim, Donghan; Lee, Eungje
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 947-958
  • DOI: 10.1002/adfm.201200691

Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling
journal, April 2015

  • Chen, Chaoji; Wen, Yanwei; Hu, Xianluo
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7929

Probing the Failure Mechanism of SnO 2 Nanowires for Sodium-Ion Batteries
journal, October 2013

  • Gu, Meng; Kushima, Akihiro; Shao, Yuyan
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402633n

Self-Supported Nanotube Arrays of Sulfur-Doped TiO 2 Enabling Ultrastable and Robust Sodium Storage
journal, January 2016


Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries
journal, May 2013

  • Sun, Yang; Zhao, Liang; Pan, Huilin
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2878

High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries
journal, December 2013

  • Yu, Denis Y. W.; Prikhodchenko, Petr V.; Mason, Chad W.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3922

High Power-High Energy Sodium Battery Based on Threefold Interpenetrating Network
journal, January 2016

  • Zhu, Changbao; Kopold, Peter; van Aken, Peter A.
  • Advanced Materials, Vol. 28, Issue 12
  • DOI: 10.1002/adma.201505943

Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries
journal, January 2013

  • Xu, Yang; Memarzadeh Lotfabad, Elmira; Wang, Huanlei
  • Chemical Communications, Vol. 49, Issue 79
  • DOI: 10.1039/c3cc45254a

In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode
journal, January 2016

  • Zhang, Liqiang; Wang, Yuecun; Xie, Degang
  • RSC Advances, Vol. 6, Issue 14
  • DOI: 10.1039/C5RA24086G

A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries
journal, August 2013

  • Wang, Yuesheng; Yu, Xiqian; Xu, Shuyin
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3365

Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes
journal, September 2015


Superior Sodium Storage in Na 2 Ti 3 O 7 Nanotube Arrays through Surface Engineering
journal, March 2016

  • Ni, Jiangfeng; Fu, Shidong; Wu, Chao
  • Advanced Energy Materials, Vol. 6, Issue 11
  • DOI: 10.1002/aenm.201502568

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

    Works referencing / citing this record:

    Progress and perspective of aqueous zinc-ion battery
    journal, September 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.