DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A rapid molecular precursor solid-state route to crystalline Fe2GeS4 nanoparticles

Abstract

Iron germanium sulfide (Fe2GeS4) recently emerged as a potential thin film solar photovoltaic absorber. The introduction of the third element—germanium (Ge)—viewed as a solution for overcoming multiple barriers of a photovoltaic pyrite, confers stability to Fe2GeS4 at elevated temperatures, typically required for accomplishing grain growth in Gen 2 thin film PV. A facile synthesis of Fe2GeS4 nanoparticles from molecular precursors, comprising mechanical mixing of starting materials followed by a two-hour annealing in a sulfur-rich atmosphere is presented herein. Further processing of the resulting Fe2GeS4 nanopowders at elevated temperatures demonstrates high thermal stability of Fe2GeS4 (up to 500 °C), in comparison with pyrite, which shows onset of pyrrhotite upon heating above 160 °C. Based on the secondary crystalline phases formed, here we propose a mechanism of decomposition of Fe2GeS4 at high temperatures. Films fabricated with Fe2GeS4 were further annealed and revealed that Fe2GeS4 withstands high temperatures in thin film.

Authors:
 [1];  [2];  [1];  [1];  [3]
  1. Delaware State University, Dover, DE (United States)
  2. Delaware State University, Dover, DE (United States); Rowan University, Glassboro, NJ (United States)
  3. Delaware State University, Dover, DE (United States); University of Delaware, Newark, DE (United States)
Publication Date:
Research Org.:
Delaware State University, Dover, DE (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); National Science Foundation (NSF)
OSTI Identifier:
1538572
Alternate Identifier(s):
OSTI ID: 1548463
Grant/Contract Number:  
EE0006322; 1435716; 1535876; 1719379
Resource Type:
Accepted Manuscript
Journal Name:
Materials Letters
Additional Journal Information:
Journal Volume: 223; Journal Issue: C; Journal ID: ISSN 0167-577X
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; nanoparticles; colloidal processing; solar energy materials; electronic materials; Fe2Ge2S4

Citation Formats

Hwang, Po-Yu, Berg, Dominik M., Liu, Mimi, Lai, Cheng-Yu, and Radu, Daniela R. A rapid molecular precursor solid-state route to crystalline Fe2GeS4 nanoparticles. United States: N. p., 2018. Web. doi:10.1016/j.matlet.2018.04.020.
Hwang, Po-Yu, Berg, Dominik M., Liu, Mimi, Lai, Cheng-Yu, & Radu, Daniela R. A rapid molecular precursor solid-state route to crystalline Fe2GeS4 nanoparticles. United States. https://doi.org/10.1016/j.matlet.2018.04.020
Hwang, Po-Yu, Berg, Dominik M., Liu, Mimi, Lai, Cheng-Yu, and Radu, Daniela R. Thu . "A rapid molecular precursor solid-state route to crystalline Fe2GeS4 nanoparticles". United States. https://doi.org/10.1016/j.matlet.2018.04.020. https://www.osti.gov/servlets/purl/1538572.
@article{osti_1538572,
title = {A rapid molecular precursor solid-state route to crystalline Fe2GeS4 nanoparticles},
author = {Hwang, Po-Yu and Berg, Dominik M. and Liu, Mimi and Lai, Cheng-Yu and Radu, Daniela R.},
abstractNote = {Iron germanium sulfide (Fe2GeS4) recently emerged as a potential thin film solar photovoltaic absorber. The introduction of the third element—germanium (Ge)—viewed as a solution for overcoming multiple barriers of a photovoltaic pyrite, confers stability to Fe2GeS4 at elevated temperatures, typically required for accomplishing grain growth in Gen 2 thin film PV. A facile synthesis of Fe2GeS4 nanoparticles from molecular precursors, comprising mechanical mixing of starting materials followed by a two-hour annealing in a sulfur-rich atmosphere is presented herein. Further processing of the resulting Fe2GeS4 nanopowders at elevated temperatures demonstrates high thermal stability of Fe2GeS4 (up to 500 °C), in comparison with pyrite, which shows onset of pyrrhotite upon heating above 160 °C. Based on the secondary crystalline phases formed, here we propose a mechanism of decomposition of Fe2GeS4 at high temperatures. Films fabricated with Fe2GeS4 were further annealed and revealed that Fe2GeS4 withstands high temperatures in thin film.},
doi = {10.1016/j.matlet.2018.04.020},
journal = {Materials Letters},
number = C,
volume = 223,
place = {United States},
year = {Thu Apr 05 00:00:00 EDT 2018},
month = {Thu Apr 05 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Energetic characterization of the photoactive FeS2 (pyrite) interface
journal, December 1986


Solution synthesis of single-crystalline Fe2GeS4 nanosheets
journal, November 2016


The promise of solution-processed Fe2GeS4 thin films in iron chalcogenide photovoltaics
journal, February 2018


Increasing the Band Gap of Iron Pyrite by Alloying with Oxygen
journal, August 2012

  • Hu, Jun; Zhang, Yanning; Law, Matt
  • Journal of the American Chemical Society, Vol. 134, Issue 32
  • DOI: 10.1021/ja3053464

Crystallization of amorphous germanium sulfide and germanium selenide under pressure
journal, August 1977

  • Shimada, Masahiko.; Dachille, Frank.
  • Inorganic Chemistry, Vol. 16, Issue 8
  • DOI: 10.1021/ic50174a055

Photoelectrochemistry of Highly Quantum Efficient Single-Crystalline n-FeS[sub 2] (Pyrite)
journal, January 1986

  • Ennaoui, A.
  • Journal of The Electrochemical Society, Vol. 133, Issue 1
  • DOI: 10.1149/1.2108553

Iron Chalcogenide Photovoltaic Absorbers
journal, August 2011

  • Yu, Liping; Lany, Stephan; Kykyneshi, Robert
  • Advanced Energy Materials, Vol. 1, Issue 5
  • DOI: 10.1002/aenm.201100351

Reactive sputter deposition of pyrite structure transition metal disulfide thin films: Microstructure, transport, and magnetism
journal, September 2012

  • Baruth, A.; Manno, M.; Narasimhan, D.
  • Journal of Applied Physics, Vol. 112, Issue 5
  • DOI: 10.1063/1.4751358

Iron disulfide for solar energy conversion
journal, May 1993


Colloidal Iron Pyrite (FeS 2 ) Nanocrystal Inks for Thin-Film Photovoltaics
journal, February 2011

  • Puthussery, James; Seefeld, Sean; Berry, Nicholas
  • Journal of the American Chemical Society, Vol. 133, Issue 4
  • DOI: 10.1021/ja1096368

Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides
journal, March 1990


Phase Pure Pyrite FeS 2 Nanocubes Synthesized Using Oleylamine as Ligand, Solvent, and Reductant
journal, June 2015

  • Jiang, Feng; Peckler, Lauren T.; Muscat, Anthony J.
  • Crystal Growth & Design, Vol. 15, Issue 8
  • DOI: 10.1021/acs.cgd.5b00751

Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS2) thin films by MOCVD
journal, June 1995


The path to 25% silicon solar cell efficiency: History of silicon cell evolution
journal, May 2009

  • Green, Martin A.
  • Progress in Photovoltaics: Research and Applications, Vol. 17, Issue 3
  • DOI: 10.1002/pip.892

Iron Pyrite Nanocubes: Size and Shape Considerations for Photovoltaic Application
journal, September 2012

  • Macpherson, H. Alex; Stoldt, Conrad R.
  • ACS Nano, Vol. 6, Issue 10
  • DOI: 10.1021/nn3029502

Highly crystalline Fe 2 GeS 4 nanocrystals: green synthesis and their structural and optical characterization
journal, January 2015

  • Park, Bo-In; Yu, Seunggun; Hwang, Yoonjung
  • Journal of Materials Chemistry A, Vol. 3, Issue 5
  • DOI: 10.1039/C4TA05850J

Pyrite Nanocrystal Solar Cells: Promising, or Fool’s Gold?
journal, August 2012

  • Steinhagen, Chet; Harvey, Taylor B.; Stolle, C. Jackson
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 17
  • DOI: 10.1021/jz301023c

Novel Solution Process for Fabricating Ultra-Thin-Film Absorber Layers in Fe2SiS4 and Fe2GeS4 Photovoltaics
journal, January 2014

  • Orefuwa, Samuel A.; Lai, Cheng-Yu; Dobson, Kevin
  • MRS Proceedings, Vol. 1670
  • DOI: 10.1557/opl.2014.507

Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu 2 ZnSn(S,Se) 4 Solar Cells
journal, August 2012

  • Todorov, Teodor K.; Tang, Jiang; Bag, Santanu
  • Advanced Energy Materials, Vol. 3, Issue 1
  • DOI: 10.1002/aenm.201200348

Iron sulphide solar cells
journal, December 1984


An inversion layer at the surface of n-type iron pyrite
journal, January 2014

  • Limpinsel, Moritz; Farhi, Nima; Berry, Nicholas
  • Energy & Environmental Science, Vol. 7, Issue 6
  • DOI: 10.1039/c3ee43169j

Phase Stability and Stoichiometry in Thin Film Iron Pyrite: Impact on Electronic Transport Properties
journal, June 2015

  • Zhang, Xin; Scott, Tom; Socha, Tyler
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 25
  • DOI: 10.1021/acsami.5b03422

Solution Synthesis and Reactivity of Colloidal Fe 2 GeS 4 : A Potential Candidate for Earth Abundant, Nanostructured Photovoltaics
journal, November 2013

  • Fredrick, Sarah J.; Prieto, Amy L.
  • Journal of the American Chemical Society, Vol. 135, Issue 49
  • DOI: 10.1021/ja408333y