skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 21, 2020

Title: Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas

Abstract

We present the first laboratory observations of time-resolved electron and ion velocity distributions in magnetized collisionless shock precursors. Thomson scattering of a probe laser beam was used to observe the interaction of a laser-driven, supersonic piston plasma expanding through an ambient plasma in an external magnetic field. From the Thomson-scattered spectra we measure time-resolved profiles of electron density, temperature, and ion flow speed, as well as spatially resolved magnetic fields from proton radiography. We observe direct evidence of the coupling between piston and ambient plasmas, including the acceleration of ambient ions driven by magnetic and pressure gradient electric fields, and deformation of the piston ion flow, key steps in the formation of magnetized collisionless shocks. Even before a shock has fully formed, we observe strong density compressions and electron heating associated with the pileup of piston ions. Furthermore, the results demonstrate that laboratory experiments can probe particle velocity distributions relevant to collisionless shocks, and can complement, and in some cases overcome, the limitations of similar measurements undertaken by spacecraft missions.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [1];  [2];  [6]
  1. Princeton Univ., Princeton, NJ (United States)
  2. Princeton Univ., Princeton, NJ (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  3. Univ. of Rochester, Rochester, NY (United States)
  4. Univ. of Michigan, Ann Arbor, MI (United States)
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  6. Univ. of New Hampshire, Durham, NH (United States)
Publication Date:
Research Org.:
Princeton Univ., NJ (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24); USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
OSTI Identifier:
1543244
Alternate Identifier(s):
OSTI ID: 1546406
Grant/Contract Number:  
NA0003613; FG03-09NA29553; AC05-00OR22725; SC0008655; SC0016249
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 122; Journal Issue: 24; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 79 ASTRONOMY AND ASTROPHYSICS; Laboratory astrophysics; collisionless shocks; magnetized plasmas; Thomson scattering

Citation Formats

Schaeffer, Derek B., Fox, W., Follett, R. K., Fiksel, G., Li, C. K., Matteucci, J., Bhattacharjee, A., and Germaschewski, K. Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas. United States: N. p., 2019. Web. doi:10.1103/PhysRevLett.122.245001.
Schaeffer, Derek B., Fox, W., Follett, R. K., Fiksel, G., Li, C. K., Matteucci, J., Bhattacharjee, A., & Germaschewski, K. Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas. United States. doi:10.1103/PhysRevLett.122.245001.
Schaeffer, Derek B., Fox, W., Follett, R. K., Fiksel, G., Li, C. K., Matteucci, J., Bhattacharjee, A., and Germaschewski, K. Fri . "Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas". United States. doi:10.1103/PhysRevLett.122.245001.
@article{osti_1543244,
title = {Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas},
author = {Schaeffer, Derek B. and Fox, W. and Follett, R. K. and Fiksel, G. and Li, C. K. and Matteucci, J. and Bhattacharjee, A. and Germaschewski, K.},
abstractNote = {We present the first laboratory observations of time-resolved electron and ion velocity distributions in magnetized collisionless shock precursors. Thomson scattering of a probe laser beam was used to observe the interaction of a laser-driven, supersonic piston plasma expanding through an ambient plasma in an external magnetic field. From the Thomson-scattered spectra we measure time-resolved profiles of electron density, temperature, and ion flow speed, as well as spatially resolved magnetic fields from proton radiography. We observe direct evidence of the coupling between piston and ambient plasmas, including the acceleration of ambient ions driven by magnetic and pressure gradient electric fields, and deformation of the piston ion flow, key steps in the formation of magnetized collisionless shocks. Even before a shock has fully formed, we observe strong density compressions and electron heating associated with the pileup of piston ions. Furthermore, the results demonstrate that laboratory experiments can probe particle velocity distributions relevant to collisionless shocks, and can complement, and in some cases overcome, the limitations of similar measurements undertaken by spacecraft missions.},
doi = {10.1103/PhysRevLett.122.245001},
journal = {Physical Review Letters},
number = 24,
volume = 122,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 21, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft
journal, October 2016


Thomson scattering measurement of a shock in laser-produced counter-streaming plasmas
journal, September 2013

  • Morita, T.; Sakawa, Y.; Tomita, K.
  • Physics of Plasmas, Vol. 20, Issue 9
  • DOI: 10.1063/1.4821967

Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility
journal, January 2015

  • Fiksel, G.; Agliata, A.; Barnak, D.
  • Review of Scientific Instruments, Vol. 86, Issue 1
  • DOI: 10.1063/1.4905625

Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory
journal, July 2017


High-Mach number, laser-driven magnetized collisionless shocks
journal, December 2017

  • Schaeffer, D. B.; Fox, W.; Haberberger, D.
  • Physics of Plasmas, Vol. 24, Issue 12
  • DOI: 10.1063/1.4989562

Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock
journal, March 2018


Laboratory space physics: Investigating the physics of space plasmas in the laboratory
journal, May 2018


Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling
journal, April 2018

  • Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter
  • Physics of Plasmas, Vol. 25, Issue 4
  • DOI: 10.1063/1.5029302

Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory
journal, July 2017


Proton imaging of stochastic magnetic fields
journal, December 2017


Demagnetization of transmitted electrons through a quasi-perpendicular collisionless shock
journal, January 2003


Electron Temperature Gradient Scale at Collisionless Shocks
journal, November 2011


A model of the pre-Sedov expansion phase of supernova remnant-ambient plasma coupling and X-ray emission from SN 1987A
journal, June 1990

  • Spicer, D. S.; Maran, S. P.; Clark, R. W.
  • The Astrophysical Journal, Vol. 356
  • DOI: 10.1086/168862

Dynamics of exploding plasmas in a large magnetized plasma
journal, January 2013

  • Niemann, C.; Gekelman, W.; Constantin, C. G.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4773911

Observation of collisionless shocks in a large current-free laboratory plasma
journal, November 2014

  • Niemann, C.; Gekelman, W.; Constantin, C. G.
  • Geophysical Research Letters, Vol. 41, Issue 21
  • DOI: 10.1002/2014GL061820

Quasiperpendicular High Mach Number Shocks
journal, September 2015


Thomson-scattering techniques to diagnose local electron and ion temperatures, density, and plasma wave amplitudes in laser produced plasmas (invited)
journal, October 2006

  • Froula, D. H.; Ross, J. S.; Divol, L.
  • Review of Scientific Instruments, Vol. 77, Issue 10
  • DOI: 10.1063/1.2336451

Lorentz Mapping of Magnetic Fields in Hot Dense Plasmas
journal, August 2009


A platform for high-repetition-rate laser experiments on the Large Plasma Device
journal, January 2018

  • Schaeffer, D. B.; Hofer, L. R.; Knall, E. N.
  • High Power Laser Science and Engineering, Vol. 6
  • DOI: 10.1017/hpl.2018.11

High-Mach number, laser-driven magnetized collisionless shocks
journal, December 2017

  • Schaeffer, D. B.; Fox, W.; Haberberger, D.
  • Physics of Plasmas, Vol. 24, Issue 12
  • DOI: 10.1063/1.4989562

Jupiter's Magnetic Field. Magnetosphere, and Interaction with the Solar Wind: Pioneer 11
journal, May 1975


New mechanism for electron heating in shocks
journal, March 1993


Collisionless momentum transfer in space and astrophysical explosions
journal, February 2017

  • Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.
  • Nature Physics, Vol. 13, Issue 6
  • DOI: 10.1038/nphys4041

Saturn's Magnetic Field and Magnetosphere
journal, January 1980


Structure of a Magnetic Flux Annihilation Layer Formed by the Collision of Supersonic, Magnetized Plasma Flows
journal, May 2016


Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston
journal, July 2012

  • Schaeffer, D. B.; Everson, E. T.; Winske, D.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4736846

Measurement of Electron Temperatures produced by Collisionless Shock Waves in a Magnetized Plasma
journal, October 1967

  • Paul, J. W. M.; Goldenbaum, G. C.; Iiyoshi, A.
  • Nature, Vol. 216, Issue 5113
  • DOI: 10.1038/216363a0

Kinetic simulation of magnetic field generation and collisionless shock formation in expanding laboratory plasmas
journal, October 2018

  • Fox, W.; Matteucci, J.; Moissard, C.
  • Physics of Plasmas, Vol. 25, Issue 10
  • DOI: 10.1063/1.5050813

The upgrade to the OMEGA laser system
journal, January 1995

  • Boehly, T. R.; Craxton, R. S.; Hinterman, T. H.
  • Review of Scientific Instruments, Vol. 66, Issue 1
  • DOI: 10.1063/1.1146333

Small‐Scale Structure of the SN 1006 Shock with Chandra Observations
journal, June 2003

  • Bamba, Aya; Yamazaki, Ryo; Ueno, Masaru
  • The Astrophysical Journal, Vol. 589, Issue 2
  • DOI: 10.1086/374687

Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations: SHOCK FRONT REFORMATION
journal, March 2007

  • Lobzin, V. V.; Krasnoselskikh, V. V.; Bosqued, J. -M.
  • Geophysical Research Letters, Vol. 34, Issue 5
  • DOI: 10.1029/2006GL029095

Filamentation Instability of Counterstreaming Laser-Driven Plasmas
journal, November 2013


A mechanism for strong shock electron heating in supernova remnants
journal, June 1988

  • Cargill, P. J.; Papadopoulos, K.
  • The Astrophysical Journal, Vol. 329
  • DOI: 10.1086/185170

Observation of Anomalous Electron Heating in Plasma Shock Waves
journal, October 1967


The Plasma Simulation Code: A modern particle-in-cell code with patch-based load-balancing
journal, August 2016

  • Germaschewski, Kai; Fox, William; Abbott, Stephen
  • Journal of Computational Physics, Vol. 318
  • DOI: 10.1016/j.jcp.2016.05.013

Electron Bulk Acceleration and Thermalization at Earth’s Quasiperpendicular Bow Shock
journal, May 2018


Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)
journal, July 2016

  • Follett, R. K.; Delettrez, J. A.; Edgell, D. H.
  • Review of Scientific Instruments, Vol. 87, Issue 11
  • DOI: 10.1063/1.4959160

Early-Time Model of Laser Plasma Expansion
journal, January 1971


Collisionless Coupling of Ion and Electron Temperatures in Counterstreaming Plasma Flows
journal, April 2013


Magnetic Reconnection between Colliding Magnetized Laser-Produced Plasma Plumes
journal, September 2014