DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory

Abstract

Here, we present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number Mms ≈ 12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.

Authors:
 [1];  [2];  [3];  [4]; ORCiD logo [5];  [3];  [3];  [6]
  1. Princeton Univ., Princeton, NJ (United States)
  2. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  3. Univ. of Rochester, Rochester, NY (United States)
  4. Univ. of Michigan, Ann Arbor, MI (United States)
  5. Princeton Univ., Princeton, NJ (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  6. Univ. of New Hampshire, Durham, NH (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1395788
Alternate Identifier(s):
OSTI ID: 1369590
Grant/Contract Number:  
NA0002731; SC0008655; SC0016249; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 119; Journal Issue: 2; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; electron acceleration; plasma; expansion; field; model; wave

Citation Formats

Schaeffer, D. B., Fox, W., Haberberger, D., Fiksel, G., Bhattacharjee, A., Barnak, D. H., Hu, S. X., and Germaschewski, K. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory. United States: N. p., 2017. Web. doi:10.1103/PhysRevLett.119.025001.
Schaeffer, D. B., Fox, W., Haberberger, D., Fiksel, G., Bhattacharjee, A., Barnak, D. H., Hu, S. X., & Germaschewski, K. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory. United States. https://doi.org/10.1103/PhysRevLett.119.025001
Schaeffer, D. B., Fox, W., Haberberger, D., Fiksel, G., Bhattacharjee, A., Barnak, D. H., Hu, S. X., and Germaschewski, K. Thu . "Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory". United States. https://doi.org/10.1103/PhysRevLett.119.025001. https://www.osti.gov/servlets/purl/1395788.
@article{osti_1395788,
title = {Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory},
author = {Schaeffer, D. B. and Fox, W. and Haberberger, D. and Fiksel, G. and Bhattacharjee, A. and Barnak, D. H. and Hu, S. X. and Germaschewski, K.},
abstractNote = {Here, we present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number Mms ≈ 12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.},
doi = {10.1103/PhysRevLett.119.025001},
journal = {Physical Review Letters},
number = 2,
volume = 119,
place = {United States},
year = {Thu Jul 13 00:00:00 EDT 2017},
month = {Thu Jul 13 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 54 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Magnetic fields at the solar wind termination shock
journal, July 2008

  • Burlaga, L. F.; Ness, N. F.; Acuña, M. H.
  • Nature, Vol. 454, Issue 7200
  • DOI: 10.1038/nature07029

The design of laboratory experiments to produce collisionless shocks of cosmic relevance
journal, November 2000


Time-Resolved Characterization of the Formation of a Collisionless Shock
journal, May 2013


The physics of ion decoupling in magnetized plasma expansions: PHYSICS OF ION DECOUPLING IN PLASMA EXPANSIONS
journal, November 2011

  • Hewett, Dennis W.; Brecht, Stephen H.; Larson, David J.
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A11
  • DOI: 10.1029/2011JA016904

Experimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston
journal, November 2015

  • Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934983

A model of the pre-Sedov expansion phase of supernova remnant-ambient plasma coupling and X-ray emission from SN 1987A
journal, June 1990

  • Spicer, D. S.; Maran, S. P.; Clark, R. W.
  • The Astrophysical Journal, Vol. 356
  • DOI: 10.1086/168862

Observation of collisionless shocks in a large current-free laboratory plasma
journal, November 2014

  • Niemann, C.; Gekelman, W.; Constantin, C. G.
  • Geophysical Research Letters, Vol. 41, Issue 21
  • DOI: 10.1002/2014GL061820

Quasiperpendicular High Mach Number Shocks
journal, September 2015


SPATIALLY DEPENDENT HEATING AND IONIZATION IN AN ICME OBSERVED BY BOTH ACE AND ULYSSES
journal, November 2012


Electron acceleration to relativistic energies at a strong quasi-parallel shock wave
journal, February 2013

  • Masters, A.; Stawarz, L.; Fujimoto, M.
  • Nature Physics, Vol. 9, Issue 3
  • DOI: 10.1038/nphys2541

Time Evolution of Collisionless Shock in Counterstreaming Laser-Produced Plasmas
journal, April 2011


Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
journal, January 2015

  • Huntington, C. M.; Fiuza, F.; Ross, J. S.
  • Nature Physics, Vol. 11, Issue 2
  • DOI: 10.1038/nphys3178

Jupiter's Magnetic Field. Magnetosphere, and Interaction with the Solar Wind: Pioneer 11
journal, May 1975


Physics of Collisionless Shocks
book, January 2013


Hybrid simulations of debris-ambient ion interactions in astrophysical explosions: DEBRIS-AMBIENT ION INTERACTIONS
journal, October 2007

  • Winske, Dan; Gary, S. Peter
  • Journal of Geophysical Research: Space Physics, Vol. 112, Issue A10
  • DOI: 10.1029/2007JA012276

Collisionless momentum transfer in space and astrophysical explosions
journal, February 2017

  • Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.
  • Nature Physics, Vol. 13, Issue 6
  • DOI: 10.1038/nphys4041

Saturn's Magnetic Field and Magnetosphere
journal, January 1980


Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave
journal, February 2015


Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston
journal, July 2012

  • Schaeffer, D. B.; Everson, E. T.; Winske, D.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4736846

Observation of Collisionless Shocks in Laser-Plasma Experiments
journal, July 2008


Simulations of ion Acceleration at Non-Relativistic Shocks. i. Acceleration Efficiency
journal, February 2014


Invited Article: Relation between electric and magnetic field structures and their proton-beam images
journal, October 2012

  • Kugland, N. L.; Ryutov, D. D.; Plechaty, C.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4750234

Detection of the Characteristic Pion-Decay Signature in Supernova Remnants
journal, February 2013


Filamentation Instability of Counterstreaming Laser-Driven Plasmas
journal, November 2013


Faster-than-Bohm Cross- B Electron Transport in Strongly Pulsed Plasmas
journal, November 2009


Experimental Observations on the Structure of Collisionless Shock Waves in a Magnetized Plasma
journal, October 1965

  • Paul, J. W. M.; Holmes, L. S.; Parkinson, M. J.
  • Nature, Vol. 208, Issue 5006
  • DOI: 10.1038/208133a0

Density-Transition Scale at Quasiperpendicular Collisionless Shocks
journal, December 2003


The Plasma Simulation Code: A modern particle-in-cell code with patch-based load-balancing
journal, August 2016

  • Germaschewski, Kai; Fox, William; Abbott, Stephen
  • Journal of Computational Physics, Vol. 318
  • DOI: 10.1016/j.jcp.2016.05.013

Magnetically Induced Collisionless Coupling between Counterstreaming Laser-Produced Plasmas
journal, August 1973

  • Cheung, Augustine Y.; Goforth, R. R.; Koopman, David W.
  • Physical Review Letters, Vol. 31, Issue 7
  • DOI: 10.1103/PhysRevLett.31.429

Measurements of electron density profiles using an angular filter refractometer
journal, May 2014

  • Haberberger, D.; Ivancic, S.; Hu, S. X.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4873899

Hydrodynamic simulations of long-scale-length two-plasmon–decay experiments at the Omega Laser Facility
journal, March 2013

  • Michel, D. T.; Edgell, D. H.; Froula, D. H.
  • Physics of Plasmas, Vol. 20, Issue 3
  • DOI: 10.1063/1.4794285

High-Energy Petawatt Capability for the Omega Laser
journal, January 2005

  • Waxer, L. J.; Maywar, D. N.; Kelly, J. H.
  • Optics and Photonics News, Vol. 16, Issue 7
  • DOI: 10.1364/OPN.16.7.000030

Early-Time Model of Laser Plasma Expansion
journal, January 1971


Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams
journal, November 2011

  • Haberberger, Dan; Tochitsky, Sergei; Fiuza, Frederico
  • Nature Physics, Vol. 8, Issue 1
  • DOI: 10.1038/nphys2130

Magnetic Reconnection between Colliding Magnetized Laser-Produced Plasma Plumes
journal, September 2014


Early-time model of laser plasma expansion
journal, January 1973


Detection of the Characteristic Pion-Decay Signature in Supernova Remnants
text, January 2013

  • Ackermann, Markus; Ajello, M.; Allafort, A.
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/desy-2014-01153

Quasiperpendicular high Mach number Shocks
text, January 2015


Works referencing / citing this record:

A platform for high-repetition-rate laser experiments on the Large Plasma Device
journal, January 2018

  • Schaeffer, D. B.; Hofer, L. R.; Knall, E. N.
  • High Power Laser Science and Engineering, Vol. 6
  • DOI: 10.1017/hpl.2018.11

Laboratory investigation of particle acceleration and magnetic field compression in collisionless colliding fast plasma flows
journal, June 2019


Astrophysical particle acceleration mechanisms in colliding magnetized laser-produced plasmas
journal, September 2017

  • Fox, W.; Park, J.; Deng, W.
  • Physics of Plasmas, Vol. 24, Issue 9
  • DOI: 10.1063/1.4993204

Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma
journal, March 2018

  • Heuer, P. V.; Weidl, M. S.; Dorst, R. S.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5017637

Expansion of a radially symmetric blast shell into a uniformly magnetized plasma
journal, May 2018

  • Dieckmann, M. E.; Moreno, Q.; Doria, D.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5024851

Laboratory space physics: Investigating the physics of space plasmas in the laboratory
journal, May 2018


Inductively coupled 30 T magnetic field platform for magnetized high-energy-density plasma studies
journal, August 2018

  • Fiksel, G.; Backhus, R.; Barnak, D. H.
  • Review of Scientific Instruments, Vol. 89, Issue 8
  • DOI: 10.1063/1.5040756

Portable and noise-tolerant magnetic field generation system
journal, September 2018

  • Edamoto, Masafumi; Morita, Taichi; Saito, Naoya
  • Review of Scientific Instruments, Vol. 89, Issue 9
  • DOI: 10.1063/1.5049217

Kinetic simulation of magnetic field generation and collisionless shock formation in expanding laboratory plasmas
journal, October 2018

  • Fox, W.; Matteucci, J.; Moissard, C.
  • Physics of Plasmas, Vol. 25, Issue 10
  • DOI: 10.1063/1.5050813

Pulsed magnetic field device for laser plasma experiments at Shenguang-II laser facility
journal, January 2020

  • Hu, Peng; Hu, Guang-yue; Wang, Yu-lin
  • Review of Scientific Instruments, Vol. 91, Issue 1
  • DOI: 10.1063/1.5139613

Enhanced ion acceleration in the ultra-intense laser driven magnetized collisionless shocks
journal, April 2019


Failed self-reformation of a sub-critical fast magnetosonic shock in collisionless plasma
journal, July 2019


Relativistic magnetohydrodynamical simulations of the resonant corrugation of a fast shock front
journal, January 2018

  • Demidem, Camilia; Lemoine, Martin; Casse, Fabien
  • Monthly Notices of the Royal Astronomical Society, Vol. 475, Issue 2
  • DOI: 10.1093/mnras/stx3367

Experimental Observation of Ion–Ion Acoustic Instability Associated with Collisionless Shocks in Laser-produced Plasmas
journal, September 2019


Expansion of a radially symmetric blast shell into a uniformly magnetized plasma
text, January 2018