skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Fluid Pulse on the Hikurangi Subduction Margin: Evidence From a Heat Flux Transect Across the Upper Limit of Gas Hydrate Stability: Fluid Pulse on the Hikurangi Margin

Abstract

A transect of seafloor heat probe measurements on the Hikurangi Margin shows a significant increase of thermal gradients upslope of the updip limit of gas hydrate stability at the seafloor. We interpret these anomalously high thermal gradients as evidence for a fluid pulse leading to advective heat flux, while endothermic cooling from gas hydrate dissociation depresses temperatures in the hydrate stability field. Previous studies predict a seamount on the subducting Pacific Plate to cause significant overpressure beneath our study area, which may be the source of the fluid pulse. Double-bottom simulating reflections are present in our study area and likely caused by uplift based on gas hydrate phase boundary considerations, although we cannot exclude a thermogenic origin. We suggest that uplift may be associated with the leading edge of the subducting seamount. Our results provide further evidence for the transient nature of fluid expulsion in subduction zones.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [2];  [5];  [3];  [6];  [6]
  1. Univ. of Auckland (New Zealand)
  2. Univ. of Bremen (Germany)
  3. GNS Science, Wellington (New Zealand)
  4. NIWA, Wellington (New Zealand)
  5. Univ. of Jena (Germany)
  6. Texas A & M Univ., Corpus Christi, TX (United States)
Publication Date:
Research Org.:
Praxair, Inc., Danbury, CT (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1537306
Alternate Identifier(s):
OSTI ID: 1415236
Grant/Contract Number:  
FE0026163
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 44; Journal Issue: 24; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Geology

Citation Formats

Pecher, I. A., Villinger, H., Kaul, N., Crutchley, G. J., Mountjoy, J. J., Huhn, K., Kukowski, N., Henrys, S. A., Rose, P. S., and Coffin, R. B. A Fluid Pulse on the Hikurangi Subduction Margin: Evidence From a Heat Flux Transect Across the Upper Limit of Gas Hydrate Stability: Fluid Pulse on the Hikurangi Margin. United States: N. p., 2017. Web. doi:10.1002/2017gl076368.
Pecher, I. A., Villinger, H., Kaul, N., Crutchley, G. J., Mountjoy, J. J., Huhn, K., Kukowski, N., Henrys, S. A., Rose, P. S., & Coffin, R. B. A Fluid Pulse on the Hikurangi Subduction Margin: Evidence From a Heat Flux Transect Across the Upper Limit of Gas Hydrate Stability: Fluid Pulse on the Hikurangi Margin. United States. doi:10.1002/2017gl076368.
Pecher, I. A., Villinger, H., Kaul, N., Crutchley, G. J., Mountjoy, J. J., Huhn, K., Kukowski, N., Henrys, S. A., Rose, P. S., and Coffin, R. B. Thu . "A Fluid Pulse on the Hikurangi Subduction Margin: Evidence From a Heat Flux Transect Across the Upper Limit of Gas Hydrate Stability: Fluid Pulse on the Hikurangi Margin". United States. doi:10.1002/2017gl076368. https://www.osti.gov/servlets/purl/1537306.
@article{osti_1537306,
title = {A Fluid Pulse on the Hikurangi Subduction Margin: Evidence From a Heat Flux Transect Across the Upper Limit of Gas Hydrate Stability: Fluid Pulse on the Hikurangi Margin},
author = {Pecher, I. A. and Villinger, H. and Kaul, N. and Crutchley, G. J. and Mountjoy, J. J. and Huhn, K. and Kukowski, N. and Henrys, S. A. and Rose, P. S. and Coffin, R. B.},
abstractNote = {A transect of seafloor heat probe measurements on the Hikurangi Margin shows a significant increase of thermal gradients upslope of the updip limit of gas hydrate stability at the seafloor. We interpret these anomalously high thermal gradients as evidence for a fluid pulse leading to advective heat flux, while endothermic cooling from gas hydrate dissociation depresses temperatures in the hydrate stability field. Previous studies predict a seamount on the subducting Pacific Plate to cause significant overpressure beneath our study area, which may be the source of the fluid pulse. Double-bottom simulating reflections are present in our study area and likely caused by uplift based on gas hydrate phase boundary considerations, although we cannot exclude a thermogenic origin. We suggest that uplift may be associated with the leading edge of the subducting seamount. Our results provide further evidence for the transient nature of fluid expulsion in subduction zones.},
doi = {10.1002/2017gl076368},
journal = {Geophysical Research Letters},
number = 24,
volume = 44,
place = {United States},
year = {2017},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Sea level and global ice volumes from the Last Glacial Maximum to the Holocene
journal, October 2014

  • Lambeck, K.; Rouby, H.; Purcell, A.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 43
  • DOI: 10.1073/pnas.1411762111

Structure II gas hydrates found below the bottom-simulating reflector: Structure II Gas Hydrates Below a BSR
journal, June 2016

  • Paganoni, M.; Cartwright, J. A.; Foschi, M.
  • Geophysical Research Letters, Vol. 43, Issue 11
  • DOI: 10.1002/2016GL069452

Focussed fluid flow on the Hikurangi Margin, New Zealand — Evidence from possible local upwarping of the base of gas hydrate stability
journal, July 2010


On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea
journal, March 2017

  • Zander, Timo; Haeckel, Matthias; Berndt, Christian
  • Earth and Planetary Science Letters, Vol. 462
  • DOI: 10.1016/j.epsl.2017.01.006

Sound velocity–density relations in sea‐floor sediments and rocks
journal, February 1978

  • Hamilton, Edwin L.
  • The Journal of the Acoustical Society of America, Vol. 63, Issue 2
  • DOI: 10.1121/1.381747

Conductive heat flow variations from bottom-simulating reflectors on the Hikurangi margin, New Zealand: CONDUCTIVE HEAT FLOW, HIKURANGI MARGIN, NEW ZEALAND
journal, January 2003

  • Henrys, Stuart A.; Ellis, Susan; Uruski, Christopher
  • Geophysical Research Letters, Vol. 30, Issue 2
  • DOI: 10.1029/2002GL015772

Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand
journal, January 2010

  • Wallace, Laura M.; Beavan, John
  • Journal of Geophysical Research, Vol. 115, Issue B12
  • DOI: 10.1029/2010JB007717

Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount
journal, July 2014


Fluid budgets along the northern Hikurangi subduction margin, New Zealand: the effect of a subducting seamount on fluid pressure
journal, April 2015

  • Ellis, Susan; Fagereng, Åke; Barker, Dan
  • Geophysical Journal International, Vol. 202, Issue 1
  • DOI: 10.1093/gji/ggv127

Observation and tentative interpretation of a double BSR on the Nankai slope
journal, July 2002


The measurement of marine geothermal heat flow by a multipenetration probe with digital acoustic telemetry and insitu thermal conductivity
journal, December 1979

  • Hyndman, R. D.; Davis, E. E.; Wright, J. A.
  • Marine Geophysical Researches, Vol. 4, Issue 2
  • DOI: 10.1007/BF00286404

Shallow methane hydrate system controls ongoing, downslope sediment transport in a low-velocity active submarine landslide complex, Hikurangi Margin, New Zealand
journal, November 2014

  • Mountjoy, Joshu J.; Pecher, Ingo; Henrys, Stuart
  • Geochemistry, Geophysics, Geosystems, Vol. 15, Issue 11
  • DOI: 10.1002/2014GC005379

Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events
journal, January 2010


Liquid Propane + Water Phase Equilibria at Hydrate Conditions
journal, March 2003

  • Makogon, Yuri F.
  • Journal of Chemical & Engineering Data, Vol. 48, Issue 2
  • DOI: 10.1021/je020143w

Postseismic fluid flow after the large subduction earthquake of Antofagasta, Chile
journal, January 2001


Contribution of Vertical Methane Flux to Shallow Sediment Carbon Pools across Porangahau Ridge, New Zealand
journal, August 2014

  • Coffin, Richard; Hamdan, Leila; Smith, Joseph
  • Energies, Vol. 7, Issue 8
  • DOI: 10.3390/en7085332

Upward shifts in the southern Hydrate Ridge gas hydrate stability zone following postglacial warming, offshore Oregon
journal, January 2005


Sediment compaction and fluid migration in the Makran Accretionary Prism
journal, January 1989


Erosion of the seafloor at the top of the gas hydrate stability zone on the Hikurangi Margin, New Zealand
journal, January 2005

  • Pecher, I. A.; Henrys, S. A.; Ellis, S.
  • Geophysical Research Letters, Vol. 32, Issue 24
  • DOI: 10.1029/2005GL024687

Recent changes to the Gulf Stream causing widespread gas hydrate destabilization
journal, October 2012

  • Phrampus, Benjamin J.; Hornbach, Matthew J.
  • Nature, Vol. 490, Issue 7421
  • DOI: 10.1038/nature11528

Formation Velocity and Density—The Diagnostic Basics for Stratigraphic Traps
journal, December 1974

  • Gardner, G. H. F.; Gardner, L. W.; Gregory, A. R.
  • GEOPHYSICS, Vol. 39, Issue 6
  • DOI: 10.1190/1.1440465

A model of deep crustal fluid flow following the M w = 8.0 Antofagasta, Chile, earthquake : FLUID FLOW AFTER ANTOFAGASTA EARTHQUAKE
journal, June 2004

  • Koerner, A.; Kissling, E.; Miller, S. A.
  • Journal of Geophysical Research: Solid Earth, Vol. 109, Issue B6
  • DOI: 10.1029/2003JB002816

Rates of vertical groundwater movement estimated from the Earth's thermal profile
journal, June 1965


The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica
journal, September 2014


Methane hydrate stability in seawater
journal, September 1994

  • Dickens, Gerald R.; Quinby-Hunt, Mary S.
  • Geophysical Research Letters, Vol. 21, Issue 19
  • DOI: 10.1029/94GL01858

Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, flow rates, and fluid budget
journal, December 1998

  • Saffer, Demian M.; Bekins, Barbara A.
  • Journal of Geophysical Research: Solid Earth, Vol. 103, Issue B12
  • DOI: 10.1029/98JB01983

Gas hydrates-geological perspective and global change
journal, May 1993

  • Kvenvolden, Keith A.
  • Reviews of Geophysics, Vol. 31, Issue 2
  • DOI: 10.1029/93RG00268

Gas escape features off New Zealand: Evidence of massive release of methane from hydrates: MASSIVE NZ GAS ESCAPE FEATURES
journal, November 2010

  • Davy, Bryan; Pecher, Ingo; Wood, Ray
  • Geophysical Research Letters, Vol. 37, Issue 21
  • DOI: 10.1029/2010GL045184

In situ observations of earthquake-driven fluid pulses within the Japan Trench plate boundary fault zone
journal, August 2016

  • Fulton, Patrick M.; Brodsky, Emily E.
  • Geology, Vol. 44, Issue 10
  • DOI: 10.1130/G38034.1

Effect of hydrate nucleation mechanisms and capillarity on permeability reduction in granular media: NUCLEATION-DEPENDENT PERMEABILITY
journal, September 2016

  • Kang, Dong Hun; Yun, Tae Sup; Kim, Kwang Yeom
  • Geophysical Research Letters, Vol. 43, Issue 17
  • DOI: 10.1002/2016GL070511

Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments
journal, March 1999

  • Xu, Wenyue; Ruppel, Carolyn
  • Journal of Geophysical Research: Solid Earth, Vol. 104, Issue B3
  • DOI: 10.1029/1998JB900092

Deformation and faulting of subduction overriding plate caused by a subducted seamount: SEAMOUNT-INDUCED UPPER PLATE DEFORMATION
journal, September 2016


Mean and variability in the Wairarapa and Hikurangi Eddies, New Zealand
journal, March 2005


The potential influence of shallow gas and gas hydrates on sea floor erosion of Rock Garden, an uplifted ridge offshore of New Zealand
journal, February 2010

  • Crutchley, Gareth J.; Geiger, Sebastian; Pecher, Ingo A.
  • Geo-Marine Letters, Vol. 30, Issue 3-4
  • DOI: 10.1007/s00367-010-0186-y

Seismic and seafloor evidence for free gas, gas hydrates, and fluid seeps on the transform margin offshore Cape Mendocino: HYDRATES ON TRANSFORM MARGIN OFF CAPE MENDOCINO
journal, May 2003

  • Tréhu, Anne M.; Stakes, Debra S.; Bartlett, Cindy D.
  • Journal of Geophysical Research: Solid Earth, Vol. 108, Issue B5
  • DOI: 10.1029/2001JB001679

The pulse-probe method of conductivity measurement
journal, May 1979


Thermo-hydraulics of the Peruvian accretionarycomplex at 12°S
journal, February 1999


Simulation of gas hydrate dissociation caused by repeated tectonic uplift events: Gas Hydrate Dissociation by Uplift
journal, May 2016

  • Goto, Shusaku; Matsubayashi, Osamu; Nagakubo, Sadao
  • Journal of Geophysical Research: Solid Earth, Vol. 121, Issue 5
  • DOI: 10.1002/2015JB012711

Hydrologic responses to earthquakes and a general metric
journal, February 2010


    Works referencing / citing this record:

    Sedimentation Controls on Methane‐Hydrate Dynamics Across Glacial/Interglacial Stages: An Example From International Ocean Discovery Program Site U1517, Hikurangi Margin
    journal, November 2019

    • Screaton, E. J.; Torres, M. E.; Dugan, B.
    • Geochemistry, Geophysics, Geosystems, Vol. 20, Issue 11
    • DOI: 10.1029/2019gc008603

    A 3‐D Model of Gas Generation, Migration, and Gas Hydrate Formation at a Young Convergent Margin (Hikurangi Margin, New Zealand)
    journal, November 2019

    • Kroeger, K. F.; Crutchley, G. J.; Kellett, R.
    • Geochemistry, Geophysics, Geosystems, Vol. 20, Issue 11
    • DOI: 10.1029/2019gc008275

    Heat flow data at station SO247_55-5
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878103

    Heat flow data at station SO247_55-6
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878104

    Heat flow data at station SO247_55-8
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878105

    Heat flow data at station SO247_55-18
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878100

    Heat flow data at station SO247_55-3
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878101

    Heat flow data at station SO247_55-4
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878102

    Heat flow data at station SO247_55-7
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878108

    Heat flow data at station SO247_55-17
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878099

    Heat flow data at station SO247_55-13
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878095

    Heat flow data at station SO247_55-14
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878096

    Heat flow data at station SO247_55-15
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878097

    Heat flow data at station SO247_55-16
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878098

    Marine Forearc Extension in the Hikurangi Margin: New Insights From High-Resolution 3-D Seismic Data
    journal, May 2018

    • Böttner, Christoph; Gross, Felix; Geersen, Jacob
    • Tectonics, Vol. 37, Issue 5
    • DOI: 10.1029/2017tc004906

    Heat flow data at station SO247_55-1
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878092

    Heat flow data at station SO247_55-10
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878093

    Heat flow data at station SO247_55-12
    dataset, January 2017

    • Pecher, Ingo A.; Villinger, Heinrich; Kaul, Norbert E.
    • PANGAEA - Data Publisher for Earth & Environmental Science
    • DOI: 10.1594/pangaea.878094