DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Amorphous MoS 3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries

Abstract

Many problems associated with Li-S and Na-S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS3 as such a material for room-temperature Li-S and Na-S batteries. In Li-S batteries, MoS3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 degrees C. MoS3 can also be used as the cathode material of even more challenging Na-S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS3. It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates.

Authors:
 [1];  [2];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [2]
  1. Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China,
  2. Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE; Ministry of Science and Technology of the People's Republic of China; National Natural Science Foundation of China (NSFC); National Natural Science Foundation of Jiangsu Province; Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1523292
Alternate Identifier(s):
OSTI ID: 1461311
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 114 Journal Issue: 50; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Li-S battery; Na-S battery; amorphous MoS3; carbonate

Citation Formats

Ye, Hualin, Ma, Lu, Zhou, Yu, Wang, Lu, Han, Na, Zhao, Feipeng, Deng, Jun, Wu, Tianpin, Li, Yanguang, and Lu, Jun. Amorphous MoS 3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries. United States: N. p., 2017. Web. doi:10.1073/pnas.1711917114.
Ye, Hualin, Ma, Lu, Zhou, Yu, Wang, Lu, Han, Na, Zhao, Feipeng, Deng, Jun, Wu, Tianpin, Li, Yanguang, & Lu, Jun. Amorphous MoS 3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries. United States. https://doi.org/10.1073/pnas.1711917114
Ye, Hualin, Ma, Lu, Zhou, Yu, Wang, Lu, Han, Na, Zhao, Feipeng, Deng, Jun, Wu, Tianpin, Li, Yanguang, and Lu, Jun. Mon . "Amorphous MoS 3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries". United States. https://doi.org/10.1073/pnas.1711917114.
@article{osti_1523292,
title = {Amorphous MoS 3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries},
author = {Ye, Hualin and Ma, Lu and Zhou, Yu and Wang, Lu and Han, Na and Zhao, Feipeng and Deng, Jun and Wu, Tianpin and Li, Yanguang and Lu, Jun},
abstractNote = {Many problems associated with Li-S and Na-S batteries essentially root in the generation of their soluble polysulfide intermediates. While conventional wisdom mainly focuses on trapping polysulfides at the cathode using various functional materials, few strategies are available at present to fully resolve or circumvent this long-standing issue. In this study, we propose the concept of sulfur-equivalent cathode materials, and demonstrate the great potential of amorphous MoS3 as such a material for room-temperature Li-S and Na-S batteries. In Li-S batteries, MoS3 exhibits sulfur-like behavior with large reversible specific capacity, excellent cycle life, and the possibility to achieve high areal capacity. Most remarkably, it is also fully cyclable in the carbonate electrolyte under a relatively high temperature of 55 degrees C. MoS3 can also be used as the cathode material of even more challenging Na-S batteries to enable decent capacity and good cycle life. Operando X-ray absorption spectroscopy (XAS) experiments are carried out to track the structural evolution of MoS3. It largely preserves its chain-like structure during repetitive battery cycling without generating any free polysulfide intermediates.},
doi = {10.1073/pnas.1711917114},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 50,
volume = 114,
place = {United States},
year = {Mon Nov 27 00:00:00 EST 2017},
month = {Mon Nov 27 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1711917114

Citation Metrics:
Cited by: 138 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium–sulfur cells
journal, October 2015

  • Jiang, Jian; Zhu, Jianhui; Ai, Wei
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9622

Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells
journal, November 2012


Structure of Amorphous MoS3
journal, June 1995

  • Weber, Th.; Muijsers, J. C.; Niemantsverdriet, J. W.
  • The Journal of Physical Chemistry, Vol. 99, Issue 22
  • DOI: 10.1021/j100022a037

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Mechanistic Insights into Surface Chemical Interactions between Lithium Polysulfides and Transition Metal Oxides
journal, June 2017

  • Zhong, Yiren; Yang, Ke R.; Liu, Wen
  • The Journal of Physical Chemistry C, Vol. 121, Issue 26
  • DOI: 10.1021/acs.jpcc.7b04170

Batteries
journal, October 2015


Safe and Durable High-Temperature Lithium–Sulfur Batteries via Molecular Layer Deposited Coating
journal, May 2016


Understanding the Lithium Sulfur Battery System at Relevant Scales
journal, August 2015


Amorphous molybdenum trisulfide: A new lithium battery cathode
journal, November 1979


Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges
journal, October 2014


Ultrathin dendrimer–graphene oxide composite film for stable cycling lithium–sulfur batteries
journal, March 2017

  • Liu, Wen; Jiang, Jianbing; Yang, Ke R.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 14
  • DOI: 10.1073/pnas.1620809114

A Revolution in Electrodes: Recent Progress in Rechargeable Lithium-Sulfur Batteries
journal, December 2014


Lithium ion battery applications of molybdenum disulfide (MoS 2 ) nanocomposites
journal, January 2014

  • Stephenson, Tyler; Li, Zhi; Olsen, Brian
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42591F

Covalent sulfur for advanced room temperature sodium-sulfur batteries
journal, October 2016


Modeling the Structure of Amorphous MoS 3 :  A Neutron Diffraction and Reverse Monte Carlo Study
journal, January 2004

  • Hibble, Simon J.; Wood, Glenn B.
  • Journal of the American Chemical Society, Vol. 126, Issue 3
  • DOI: 10.1021/ja037666o

Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium–Sulfur Batteries
journal, May 2015


Comparative IR and Raman studies of various amorphous MoS3 and LixMoS3 phases
journal, July 1989


Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries
journal, June 2014

  • Chung, Sheng-Heng; Manthiram, Arumugam
  • Advanced Functional Materials, Vol. 24, Issue 33
  • DOI: 10.1002/adfm.201400845

Water-Soluble MoS 3 Nanoparticles for Photocatalytic H 2 Evolution
journal, March 2015


Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Lithium-Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells
journal, April 2015

  • Hagen, Markus; Hanselmann, Dominik; Ahlbrecht, Katharina
  • Advanced Energy Materials, Vol. 5, Issue 16, 1401986
  • DOI: 10.1002/aenm.201401986

Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries
journal, October 2012

  • Xin, Sen; Gu, Lin; Zhao, Na-Hong
  • Journal of the American Chemical Society, Vol. 134, Issue 45
  • DOI: 10.1021/ja308170k

Designing high-energy lithium–sulfur batteries
journal, January 2016

  • Seh, Zhi Wei; Sun, Yongming; Zhang, Qianfan
  • Chemical Society Reviews, Vol. 45, Issue 20
  • DOI: 10.1039/C5CS00410A

Regeneration of Metal Sulfides in the Delithiation Process: The Key to Cyclic Stability
journal, July 2016

  • Li, Xiaomin; Zai, Jiantao; Xiang, Shijie
  • Advanced Energy Materials, Vol. 6, Issue 19
  • DOI: 10.1002/aenm.201601056

Mechanism of Lithium Storage in MoS2 and the Feasibility of Using Li2S/Mo Nanocomposites as Cathode Materials for Lithium-Sulfur Batteries
journal, February 2012

  • Fang, Xiangpeng; Guo, Xianwei; Mao, Ya
  • Chemistry - An Asian Journal, Vol. 7, Issue 5
  • DOI: 10.1002/asia.201100796

Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes
journal, September 2014

  • Seh, Zhi Wei; Yu, Jung Ho; Li, Weiyang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6017

High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach
journal, April 2013

  • Li, W.; Zheng, G.; Yang, Y.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 18
  • DOI: 10.1073/pnas.1220992110

Multi-Functional Layered WS 2 Nanosheets for Enhancing the Performance of Lithium-Sulfur Batteries
journal, October 2016

  • Lei, Tianyu; Chen, Wei; Huang, Jianwen
  • Advanced Energy Materials, Vol. 7, Issue 4
  • DOI: 10.1002/aenm.201601843

Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries
journal, July 2016

  • Wu, Min; Cui, Yi; Bhargav, Amruth
  • Angewandte Chemie International Edition, Vol. 55, Issue 34
  • DOI: 10.1002/anie.201603897

Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects
journal, November 2013

  • Yin, Ya-Xia; Xin, Sen; Guo, Yu-Guo
  • Angewandte Chemie International Edition, Vol. 52, Issue 50
  • DOI: 10.1002/anie.201304762

Comparative Study of Ether-Based Electrolytes for Application in Lithium–Sulfur Battery
journal, June 2015

  • Carbone, Lorenzo; Gobet, Mallory; Peng, Jing
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 25
  • DOI: 10.1021/acsami.5b02160

One-Dimensional Carbon–Sulfur Composite Fibers for Na–S Rechargeable Batteries Operating at Room Temperature
journal, August 2013

  • Hwang, Tae Hoon; Jung, Dae Soo; Kim, Joo-Seong
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl402513x

Nano-Copper-Assisted Immobilization of Sulfur in High-Surface-Area Mesoporous Carbon Cathodes for Room Temperature Na-S Batteries
journal, April 2014


A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer
journal, January 2012

  • Su, Yu-Sheng; Manthiram, Arumugam
  • Chemical Communications, Vol. 48, Issue 70, p. 8817-8819
  • DOI: 10.1039/c2cc33945e

Electrochemical Properties of Organic Disulfide/Thiolate Redox Couples
journal, January 1989

  • Liu, Meilin
  • Journal of The Electrochemical Society, Vol. 136, Issue 9
  • DOI: 10.1149/1.2097478

A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries
journal, October 2016

  • Li, Zhen; Zhang, Jintao; Guan, Buyuan
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13065

New Approaches for High Energy Density Lithium–Sulfur Battery Cathodes
journal, June 2012

  • Evers, Scott; Nazar, Linda F.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar3001348

A stable room-temperature sodium–sulfur battery
journal, June 2016

  • Wei, Shuya; Xu, Shaomao; Agrawral, Akanksha
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11722

Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries
journal, January 2013

  • Wei Seh, Zhi; Li, Weiyang; Cha, Judy J.
  • Nature Communications, Vol. 4, Article No. 1331
  • DOI: 10.1038/ncomms2327

Ambient-Temperature Sodium-Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber-Activated Carbon Composite Electrode
journal, April 2015


Progress Towards Commercially Viable Li-S Battery Cells
journal, April 2015

  • Urbonaite, Sigita; Poux, Tiphaine; Novák, Petr
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500118

Achieving High-Performance Room-Temperature Sodium–Sulfur Batteries With S@Interconnected Mesoporous Carbon Hollow Nanospheres
journal, December 2016

  • Wang, Yun-Xiao; Yang, Jianping; Lai, Weihong
  • Journal of the American Chemical Society, Vol. 138, Issue 51
  • DOI: 10.1021/jacs.6b08685

Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells
journal, November 2011

  • Ji, Liwen; Rao, Mumin; Zheng, Haimei
  • Journal of the American Chemical Society, Vol. 133, Issue 46, p. 18522-18525
  • DOI: 10.1021/ja206955k

Recent Advances in Electrolytes for Lithium-Sulfur Batteries
journal, April 2015

  • Zhang, Shiguo; Ueno, Kazuhide; Dokko, Kaoru
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500117

Janus Separator of Polypropylene-Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium-Sulfur Batteries
journal, October 2015


MoS[sub 3] Thin Film Cathodes Prepared by Chemical Vapor Deposition
journal, January 1989

  • Schleich, D. M.
  • Journal of The Electrochemical Society, Vol. 136, Issue 11
  • DOI: 10.1149/1.2096437

Nanostructured sulfur cathodes
journal, January 2013

  • Yang, Yuan; Zheng, Guangyuan; Cui, Yi
  • Chemical Society Reviews, Vol. 42, Issue 7, p. 3018-3032
  • DOI: 10.1039/c2cs35256g

Cathode Composites for Li–S Batteries via the Use of Oxygenated Porous Architectures
journal, October 2011

  • Demir-Cakan, Rezan; Morcrette, Mathieu; Nouar, Farid
  • Journal of the American Chemical Society, Vol. 133, Issue 40
  • DOI: 10.1021/ja2062659

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Electrochemically Induced High Capacity Displacement Reaction of PEO/MoS2/Graphene Nanocomposites with Lithium
journal, May 2011

  • Xiao, Jie; Wang, Xiaojian; Yang, Xiao-Qing
  • Advanced Functional Materials, Vol. 21, Issue 15
  • DOI: 10.1002/adfm.201002752

Iron-based sodium-ion full batteries
journal, January 2016

  • Ye, Hualin; Wang, Yeyun; Zhao, Feipeng
  • Journal of Materials Chemistry A, Vol. 4, Issue 5
  • DOI: 10.1039/C5TA09867J

Ambient Temperature Sodium-Sulfur Batteries
journal, January 2015


Metal hydroxide – a new stabilizer for the construction of sulfur/carbon composites as high-performance cathode materials for lithium–sulfur batteries
journal, January 2015

  • Niu, Xiao-qing; Wang, Xiu-li; Wang, Dong-huang
  • Journal of Materials Chemistry A, Vol. 3, Issue 33
  • DOI: 10.1039/C5TA03062E

Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water
journal, January 2011

  • Merki, Daniel; Fierro, Stéphane; Vrubel, Heron
  • Chem. Sci., Vol. 2, Issue 7, p. 1262-1267
  • DOI: 10.1039/C1SC00117E

A Novel Conductive Polymer-Sulfur Composite Cathode Material for Rechargeable Lithium Batteries
journal, July 2002


Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion
journal, April 2016


A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Dimercaptan–polyaniline composite electrodes for lithium batteries with high energy density
journal, February 1995

  • Oyama, N.; Tatsuma, T.; Sato, T.
  • Nature, Vol. 373, Issue 6515
  • DOI: 10.1038/373598a0

Molybdenum Polysulfide Chalcogels as High-Capacity, Anion-Redox-Driven Electrode Materials for Li-Ion Batteries
journal, November 2016


A High-Energy Room-Temperature Sodium-Sulfur Battery
journal, December 2013


Hollow Carbon Nanofibers Filled with MnO 2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries
journal, September 2015

  • Li, Zhen; Zhang, Jintao; Lou, Xiong Wen David
  • Angewandte Chemie International Edition, Vol. 54, Issue 44
  • DOI: 10.1002/anie.201506972

Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance
journal, October 2013

  • Li, Weiyang; Zhang, Qianfan; Zheng, Guangyuan
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl403130h

A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries
journal, January 2012

  • Zhou, Guangmin; Wang, Da-Wei; Li, Feng
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22294a