DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Li 2 S‐TiS 2 ‐Electrolyte Composite for Stable Li 2 S‐Based Lithium–Sulfur Batteries

Abstract

Abstract Li 2 S is a fully lithiated sulfur‐based cathode with a high theoretical capacity of 1166 mAh g −1 that can be coupled with lithium‐free anodes to develop high‐energy‐density lithium–sulfur batteries. Although various approaches have been pursued to obtain a high‐performance Li 2 S cathode, there are still formidable challenges with it (e.g., low conductivity, high overpotential, and irreversible polysulfide diffusion) and associated fabrication processes (e.g., insufficient Li 2 S, excess electrolyte, and low reversible capacity), which have prevented the realization of high electrochemical utilization and stability. Here, a new cathode design composed of a homogeneous Li 2 S‐TiS 2 ‐electrolyte composite that is prepared by a simple two‐step dry/wet‐mixing process is demonstrated, allowing the liquid electrolyte to wet the powder mixture consisting of insulating Li 2 S and conductive TiS 2 . The close‐contact, three‐phase boundary of this system improves the Li 2 S‐activation efficiency and provides fast redox‐reaction kinetics, enabling the Li 2 S‐TiS 2 ‐electrolyte cathode to attain stable cyclability at C/7 to C/3 rates, superior long‐term cyclability over 500 cycles, and promising high‐rate performance up to 1C rate. More importantly, this improved performance results from a cell design attaining a high Li 2 S loadingmore » of 6 mg cm −2 , a high Li 2 S content of 75 wt%, and a low electrolyte/Li 2 S ratio of 6.« less

Authors:
 [1]; ORCiD logo [1]
  1. Materials Science and Engineering Program &, Texas Materials Institute The University of Texas at Austin Austin TX 78712 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1529640
Grant/Contract Number:  
DE‐SC0005397
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 9 Journal Issue: 30; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Chung, Sheng‐Heng, and Manthiram, Arumugam. A Li 2 S‐TiS 2 ‐Electrolyte Composite for Stable Li 2 S‐Based Lithium–Sulfur Batteries. Germany: N. p., 2019. Web. doi:10.1002/aenm.201901397.
Chung, Sheng‐Heng, & Manthiram, Arumugam. A Li 2 S‐TiS 2 ‐Electrolyte Composite for Stable Li 2 S‐Based Lithium–Sulfur Batteries. Germany. https://doi.org/10.1002/aenm.201901397
Chung, Sheng‐Heng, and Manthiram, Arumugam. Wed . "A Li 2 S‐TiS 2 ‐Electrolyte Composite for Stable Li 2 S‐Based Lithium–Sulfur Batteries". Germany. https://doi.org/10.1002/aenm.201901397.
@article{osti_1529640,
title = {A Li 2 S‐TiS 2 ‐Electrolyte Composite for Stable Li 2 S‐Based Lithium–Sulfur Batteries},
author = {Chung, Sheng‐Heng and Manthiram, Arumugam},
abstractNote = {Abstract Li 2 S is a fully lithiated sulfur‐based cathode with a high theoretical capacity of 1166 mAh g −1 that can be coupled with lithium‐free anodes to develop high‐energy‐density lithium–sulfur batteries. Although various approaches have been pursued to obtain a high‐performance Li 2 S cathode, there are still formidable challenges with it (e.g., low conductivity, high overpotential, and irreversible polysulfide diffusion) and associated fabrication processes (e.g., insufficient Li 2 S, excess electrolyte, and low reversible capacity), which have prevented the realization of high electrochemical utilization and stability. Here, a new cathode design composed of a homogeneous Li 2 S‐TiS 2 ‐electrolyte composite that is prepared by a simple two‐step dry/wet‐mixing process is demonstrated, allowing the liquid electrolyte to wet the powder mixture consisting of insulating Li 2 S and conductive TiS 2 . The close‐contact, three‐phase boundary of this system improves the Li 2 S‐activation efficiency and provides fast redox‐reaction kinetics, enabling the Li 2 S‐TiS 2 ‐electrolyte cathode to attain stable cyclability at C/7 to C/3 rates, superior long‐term cyclability over 500 cycles, and promising high‐rate performance up to 1C rate. More importantly, this improved performance results from a cell design attaining a high Li 2 S loading of 6 mg cm −2 , a high Li 2 S content of 75 wt%, and a low electrolyte/Li 2 S ratio of 6.},
doi = {10.1002/aenm.201901397},
journal = {Advanced Energy Materials},
number = 30,
volume = 9,
place = {Germany},
year = {Wed Jun 26 00:00:00 EDT 2019},
month = {Wed Jun 26 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.201901397

Citation Metrics:
Cited by: 31 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Review on High-Loading and High-Energy Lithium-Sulfur Batteries
journal, May 2017

  • Peng, Hong-Jie; Huang, Jia-Qi; Cheng, Xin-Bing
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201700260

Li2S/transition metal carbide composite as cathode material for high performance lithium-sulfur batteries
journal, September 2018


Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries
journal, June 2017


Electrochemically Active Lithia/Metal and Lithium Sulfide/Metal Composites
journal, January 2002

  • Obrovac, M. N.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 5, Issue 4
  • DOI: 10.1149/1.1452482

A High-Performance Polymer Tin Sulfur Lithium Ion Battery
journal, February 2010

  • Hassoun, Jusef; Scrosati, Bruno
  • Angewandte Chemie International Edition, Vol. 49, Issue 13, p. 2371-2374
  • DOI: 10.1002/anie.200907324

Hybrid cathode architectures for lithium batteries based on TiS 2 and sulfur
journal, January 2015

  • Ma, Lin; Wei, Shuya; Zhuang, Houlong L.
  • Journal of Materials Chemistry A, Vol. 3, Issue 39
  • DOI: 10.1039/C5TA06348E

Performance of Blended TiS2/Sulfur/Carbon Cathodes in Lithium-Sulfur Cells
journal, January 2012

  • Garsuch, A.; Herzog, S.; Montag, L.
  • ECS Electrochemistry Letters, Vol. 1, Issue 1
  • DOI: 10.1149/2.015201eel

TiS 2 –Polysulfide Hybrid Cathode with High Sulfur Loading and Low Electrolyte Consumption for Lithium–Sulfur Batteries
journal, February 2018


Lithium-Sulfur Batteries: Co-Existence of Challenges and Opportunities
journal, September 2018

  • Zhang, Qiang; Li, Feng; Huang, Jia-Qi
  • Advanced Functional Materials, Vol. 28, Issue 38
  • DOI: 10.1002/adfm.201804589

Activated Li 2 S as a High-Performance Cathode for Rechargeable Lithium–Sulfur Batteries
journal, November 2014

  • Zu, Chenxi; Klein, Michael; Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 22
  • DOI: 10.1021/jz5021108

Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge
journal, October 2017


Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries
journal, June 2012

  • Lin, Zhan; Liu, Zengcai; Fu, Wujun
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200696

Electrochemical reactivity of Co–Li2S nanocomposite for lithium-ion batteries
journal, February 2007


Nanoporous Li2S and MWCNT-linked Li2S powder cathodes for lithium-sulfur and lithium-ion battery chemistries
journal, January 2014

  • Wu, Feixiang; Magasinski, Alexandre; Yushin, Gleb
  • Journal of Materials Chemistry A, Vol. 2, Issue 17, p. 6064-6070
  • DOI: 10.1039/C3TA14161F

Lithium Iodide as a Promising Electrolyte Additive for Lithium-Sulfur Batteries: Mechanisms of Performance Enhancement
journal, November 2014


Li-ion battery materials: present and future
journal, June 2015


Li 2 S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium–Sulfur Batteries
journal, September 2015

  • Wu, Min; Cui, Yi; Fu, Yongzhu
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 38
  • DOI: 10.1021/acsami.5b06615

A Lithium-Sulfur Cell Based on Reversible Lithium Deposition from a Li 2 S Cathode Host onto a Hostless-Anode Substrate
journal, July 2018

  • Nanda, Sanjay; Gupta, Abhay; Manthiram, Arumugam
  • Advanced Energy Materials, Vol. 8, Issue 25
  • DOI: 10.1002/aenm.201801556

A Shell-Shaped Carbon Architecture with High-Loading Capability for Lithium Sulfide Cathodes
journal, May 2017

  • Chung, Sheng-Heng; Han, Pauline; Chang, Chi-Hao
  • Advanced Energy Materials, Vol. 7, Issue 17
  • DOI: 10.1002/aenm.201700537

Attainable Gravimetric and Volumetric Energy Density of Li–S and Li Ion Battery Cells with Solid Separator-Protected Li Metal Anodes
journal, October 2015


High-voltage positive electrode materials for lithium-ion batteries
journal, January 2017

  • Li, Wangda; Song, Bohang; Manthiram, Arumugam
  • Chemical Society Reviews, Vol. 46, Issue 10
  • DOI: 10.1039/C6CS00875E

In Situ Formed Lithium Sulfide/Microporous Carbon Cathodes for Lithium-Ion Batteries
journal, November 2013

  • Zheng, Shiyou; Chen, Yvonne; Xu, Yunhua
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn404601h

Sulfur/lithium-insertion compound composite cathodes for Li–S batteries
journal, December 2014


Layered LiTiO 2 for the protection of Li 2 S cathodes against dissolution: mechanisms of the remarkable performance boost
journal, January 2018

  • Wu, Feixiang; Pollard, Travis P.; Zhao, Enbo
  • Energy & Environmental Science, Vol. 11, Issue 4
  • DOI: 10.1039/C8EE00419F

A new finding on the role of LiNO3 in lithium-sulfur battery
journal, August 2016


Li 2 S-Carbon Sandwiched Electrodes with Superior Performance for Lithium-Sulfur Batteries
journal, August 2013

  • Fu, Yongzhu; Su, Yu-Sheng; Manthiram, Arumugam
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300655

Polysulfide Shuttle Study in the Li/S Battery System
journal, January 2004

  • Mikhaylik, Yuriy V.; Akridge, James R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 11, p. A1969-A1976
  • DOI: 10.1149/1.1806394

30 Years of Lithium-Ion Batteries
journal, June 2018


Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries
journal, April 2015

  • Son, Yoonkook; Lee, Jung-Soo; Son, Yeonguk
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500110

Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder
journal, January 2013

  • Seh, Zhi Wei; Zhang, Qianfan; Li, Weiyang
  • Chemical Science, Vol. 4, Issue 9
  • DOI: 10.1039/c3sc51476e

Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy
journal, January 2016

  • Landesfeind, Johannes; Hattendorff, Johannes; Ehrl, Andreas
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.1141607jes

Ultrasmall Li2S Nanoparticles Anchored in Graphene Nanosheets for High-Energy Lithium-Ion Batteries
journal, September 2014

  • Zhang, Kai; Wang, Lijiang; Hu, Zhe
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06467

Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery
journal, January 2011


All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material
journal, August 2008


Lithium sulfur batteries, a mechanistic review
journal, January 2015

  • Wild, M.; O'Neill, L.; Zhang, T.
  • Energy & Environmental Science, Vol. 8, Issue 12
  • DOI: 10.1039/C5EE01388G

Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


Nanostructured lithium sulfide materials for lithium-sulfur batteries
journal, August 2016


A Mixed Rate Cathode for Lithium Batteries
journal, January 1981

  • Whittingham, M. Stanley
  • Journal of The Electrochemical Society, Vol. 128, Issue 2
  • DOI: 10.1149/1.2127443

New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy
journal, April 2010

  • Yang, Yuan; McDowell, Matthew T.; Jackson, Ariel
  • Nano Letters, Vol. 10, Issue 4, p. 1486-1491
  • DOI: 10.1021/nl100504q

Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes
journal, January 2014

  • Seh, Zhi Wei; Wang, Haotian; Hsu, Po-Chun
  • Energy & Environmental Science, Vol. 7, Issue 2
  • DOI: 10.1039/c3ee43395a

More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects
journal, April 2017

  • Fang, Ruopian; Zhao, Shiyong; Sun, Zhenhua
  • Advanced Materials, Vol. 29, Issue 48
  • DOI: 10.1002/adma.201606823

A mechanochemical synthesis of submicron-sized Li 2 S and a mesoporous Li 2 S/C hybrid for high performance lithium/sulfur battery cathodes
journal, January 2017

  • Li, Xiang; Gao, Mingxia; Du, Wubin
  • Journal of Materials Chemistry A, Vol. 5, Issue 14
  • DOI: 10.1039/C7TA00557A

The Importance of Chemical Reactions in the Charging Process of Lithium-Sulfur Batteries
journal, January 2018

  • Berger, Anne; Freiberg, Anna T. S.; Siebel, Armin
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.0181807jes

Interaction of TiS 2 and Sulfur in Li-S Battery System
journal, January 2017

  • Sun, Ke; Zhang, Qing; Bock, David C.
  • Journal of The Electrochemical Society, Vol. 164, Issue 6
  • DOI: 10.1149/2.1631706jes

High-Capacity Micrometer-Sized Li2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries
journal, September 2012

  • Yang, Yuan; Zheng, Guangyuan; Misra, Sumohan
  • Journal of the American Chemical Society, Vol. 134, Issue 37, p. 15387-15394
  • DOI: 10.1021/ja3052206

Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions
journal, June 2013


Progress on the Critical Parameters for Lithium-Sulfur Batteries to be Practically Viable
journal, May 2018

  • Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
  • Advanced Functional Materials, Vol. 28, Issue 28
  • DOI: 10.1002/adfm.201801188

Catalytic oxidation of Li 2 S on the surface of metal sulfides for Li−S batteries
journal, January 2017

  • Zhou, Guangmin; Tian, Hongzhen; Jin, Yang
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 5
  • DOI: 10.1073/pnas.1615837114

Revisiting the Role of Polysulfides in Lithium-Sulfur Batteries
journal, March 2018


An Ultrahigh Capacity Graphite/Li 2 S Battery with Holey-Li 2 S Nanoarchitectures
journal, May 2018


High Power Nanocomposite TiS2 Cathodes for All-Solid-State Lithium Batteries
journal, January 2011

  • Trevey, James E.; Stoldt, Conrad R.; Lee, Se-Hee
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.017112jes