DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-healing, re-adhering, and carbon-steel corrosion mitigating properties of fly ash-containing calcium aluminum phosphate cement composite at 300 °C hydrothermal temperature

Abstract

This study assesses here the ability of calcium aluminate phosphate (CAP)/fly ash F (FAF) blend composite to self-heal at early age; to re-adhere to the casing surfaces after debonding and to protect carbon steel (CS) against brine-caused corrosion before and after the re-adherence. The composite was damaged after autoclaving for 24 h at 300 °C and then exposed to the same conditions for 5 more days for the self-healing and re-adhering processes. The ability of the blend to self-heal and re-adhere to CS was evaluated 1) by measurements of the recovery of compressive and bond strengths and Young's modulus; 2) by performing the 3-dimensional micro-image analysis of sealed cracks; 3) by phase identification in composite matrix and in the cracks after the healing; 4) by measurements of CS corrosion impediment by the re-adhered composite after 300°C-5-day restoration period. After the healing, the two factors, sealing effect of cracks by reaction products and change in phase composition of cement matrix, essentially governed the recovery of the original mechanical strength. For the former, analcime phase derived from pozzolanic FAF autogenous healing aid played the major role in sealing the cracks, while the well-formed hydroxyapatite phase contributed to the latter factor. The lap-shearmore » bond with the strength of 1.11 MPa at CS plate/composite adhesive/CS plate joint failed cohesively, showing higher bond strength than strength of the composite matrix. The rebonded composite-CS plates developed a 0.37 MPa bond strength after the 5-day restoration period. The results of electrochemical polarization corrosion tests revealed that the re-adhered composite covering CS plate significantly inhibited the brine-caused corrosion of CS, leading to 0.011 mm/year corrosion rate, corresponding to 50% reduction compared with that of before re-adhering. There were two factors governing such corrosion mitigation: enhanced adhesive contact of composite with CS and increased coverage by the re-adhering composite.« less

Authors:
 [1]; ORCiD logo [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Geothermal Technologies Office; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1501580
Alternate Identifier(s):
OSTI ID: 1778476
Report Number(s):
BNL-211396-2019-JAAM
Journal ID: ISSN 0958-9465
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Cement and Concrete Composites
Additional Journal Information:
Journal Volume: 99; Journal ID: ISSN 0958-9465
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; self-healing; re-adhering; corrosion protection; calcium aluminum phosphate cement; carbon steel; fly ash, type F

Citation Formats

Sugama, Toshifumi, and Pyatina, Tatiana. Self-healing, re-adhering, and carbon-steel corrosion mitigating properties of fly ash-containing calcium aluminum phosphate cement composite at 300 °C hydrothermal temperature. United States: N. p., 2019. Web. doi:10.1016/j.cemconcomp.2019.02.011.
Sugama, Toshifumi, & Pyatina, Tatiana. Self-healing, re-adhering, and carbon-steel corrosion mitigating properties of fly ash-containing calcium aluminum phosphate cement composite at 300 °C hydrothermal temperature. United States. https://doi.org/10.1016/j.cemconcomp.2019.02.011
Sugama, Toshifumi, and Pyatina, Tatiana. Sat . "Self-healing, re-adhering, and carbon-steel corrosion mitigating properties of fly ash-containing calcium aluminum phosphate cement composite at 300 °C hydrothermal temperature". United States. https://doi.org/10.1016/j.cemconcomp.2019.02.011. https://www.osti.gov/servlets/purl/1501580.
@article{osti_1501580,
title = {Self-healing, re-adhering, and carbon-steel corrosion mitigating properties of fly ash-containing calcium aluminum phosphate cement composite at 300 °C hydrothermal temperature},
author = {Sugama, Toshifumi and Pyatina, Tatiana},
abstractNote = {This study assesses here the ability of calcium aluminate phosphate (CAP)/fly ash F (FAF) blend composite to self-heal at early age; to re-adhere to the casing surfaces after debonding and to protect carbon steel (CS) against brine-caused corrosion before and after the re-adherence. The composite was damaged after autoclaving for 24 h at 300 °C and then exposed to the same conditions for 5 more days for the self-healing and re-adhering processes. The ability of the blend to self-heal and re-adhere to CS was evaluated 1) by measurements of the recovery of compressive and bond strengths and Young's modulus; 2) by performing the 3-dimensional micro-image analysis of sealed cracks; 3) by phase identification in composite matrix and in the cracks after the healing; 4) by measurements of CS corrosion impediment by the re-adhered composite after 300°C-5-day restoration period. After the healing, the two factors, sealing effect of cracks by reaction products and change in phase composition of cement matrix, essentially governed the recovery of the original mechanical strength. For the former, analcime phase derived from pozzolanic FAF autogenous healing aid played the major role in sealing the cracks, while the well-formed hydroxyapatite phase contributed to the latter factor. The lap-shear bond with the strength of 1.11 MPa at CS plate/composite adhesive/CS plate joint failed cohesively, showing higher bond strength than strength of the composite matrix. The rebonded composite-CS plates developed a 0.37 MPa bond strength after the 5-day restoration period. The results of electrochemical polarization corrosion tests revealed that the re-adhered composite covering CS plate significantly inhibited the brine-caused corrosion of CS, leading to 0.011 mm/year corrosion rate, corresponding to 50% reduction compared with that of before re-adhering. There were two factors governing such corrosion mitigation: enhanced adhesive contact of composite with CS and increased coverage by the re-adhering composite.},
doi = {10.1016/j.cemconcomp.2019.02.011},
journal = {Cement and Concrete Composites},
number = ,
volume = 99,
place = {United States},
year = {Sat Feb 16 00:00:00 EST 2019},
month = {Sat Feb 16 00:00:00 EST 2019}
}

Journal Article:

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share: