DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Operando Quantification of (De)Lithiation Behavior of Silicon-Graphite Blended Electrodes for Lithium-Ion Batteries

Abstract

Abstract Due to the high lithium capacity of silicon, the composite (blended) electrodes containing silicon (Si) and graphite (Gr) particles are attractive alternatives to the all‐Gr electrodes used in conventional lithium‐ion batteries. In this Communication, the lithiation and delithiation in the Si and Gr particles in a 15 wt% Si composite electrode is quantified for each component using energy dispersive X‐ray diffraction. This quantification is important as the components cycle in different potential regimes, and interpretation of cycling behavior is complicated by the potential hysteresis displayed by Si. The lithiation begins with Li alloying with Si; lithiation of Gr occurs at later stages when the potential dips below 0.2 V (all potentials are given vs Li/Li + ). In the 0.2–0.01 V range, the relative lithiation of Si and Gr is ≈58% and 42%, respectively. During delithiation, Li + ion extraction occurs preferentially from Gr in the 0.01–0.23 V range and from Si in the 0.23–1.0 V range; that is, the delithiation current is carried sequentially, first by Gr and then by Si. These trends can be used for rational selection of electrochemical cycling windows that limits volumetric expansion in Si particles, thereby extending cell life.

Authors:
 [1];  [2];  [2];  [2]; ORCiD logo [2]
  1. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Delaware, Newark, DE (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE
OSTI Identifier:
1496633
Alternate Identifier(s):
OSTI ID: 1489418
Grant/Contract Number:  
AC02-06CH11357; DE‐AC02‐06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 8; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; X-ray diffraction; capacity quantification; electrochemistry; graphite silicon

Citation Formats

Yao, Koffi Pierre Claver, Okasinski, John S., Kalaga, Kaushik, Almer, Jonathan D., and Abraham, Daniel P. Operando Quantification of (De)Lithiation Behavior of Silicon-Graphite Blended Electrodes for Lithium-Ion Batteries. United States: N. p., 2019. Web. doi:10.1002/aenm.201803380.
Yao, Koffi Pierre Claver, Okasinski, John S., Kalaga, Kaushik, Almer, Jonathan D., & Abraham, Daniel P. Operando Quantification of (De)Lithiation Behavior of Silicon-Graphite Blended Electrodes for Lithium-Ion Batteries. United States. https://doi.org/10.1002/aenm.201803380
Yao, Koffi Pierre Claver, Okasinski, John S., Kalaga, Kaushik, Almer, Jonathan D., and Abraham, Daniel P. Thu . "Operando Quantification of (De)Lithiation Behavior of Silicon-Graphite Blended Electrodes for Lithium-Ion Batteries". United States. https://doi.org/10.1002/aenm.201803380. https://www.osti.gov/servlets/purl/1496633.
@article{osti_1496633,
title = {Operando Quantification of (De)Lithiation Behavior of Silicon-Graphite Blended Electrodes for Lithium-Ion Batteries},
author = {Yao, Koffi Pierre Claver and Okasinski, John S. and Kalaga, Kaushik and Almer, Jonathan D. and Abraham, Daniel P.},
abstractNote = {Abstract Due to the high lithium capacity of silicon, the composite (blended) electrodes containing silicon (Si) and graphite (Gr) particles are attractive alternatives to the all‐Gr electrodes used in conventional lithium‐ion batteries. In this Communication, the lithiation and delithiation in the Si and Gr particles in a 15 wt% Si composite electrode is quantified for each component using energy dispersive X‐ray diffraction. This quantification is important as the components cycle in different potential regimes, and interpretation of cycling behavior is complicated by the potential hysteresis displayed by Si. The lithiation begins with Li alloying with Si; lithiation of Gr occurs at later stages when the potential dips below 0.2 V (all potentials are given vs Li/Li + ). In the 0.2–0.01 V range, the relative lithiation of Si and Gr is ≈58% and 42%, respectively. During delithiation, Li + ion extraction occurs preferentially from Gr in the 0.01–0.23 V range and from Si in the 0.23–1.0 V range; that is, the delithiation current is carried sequentially, first by Gr and then by Si. These trends can be used for rational selection of electrochemical cycling windows that limits volumetric expansion in Si particles, thereby extending cell life.},
doi = {10.1002/aenm.201803380},
journal = {Advanced Energy Materials},
number = 8,
volume = 9,
place = {United States},
year = {Thu Jan 03 00:00:00 EST 2019},
month = {Thu Jan 03 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 104 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
journal, June 2016

  • Michan, Alison L.; Divitini, Giorgio; Pell, Andrew J.
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b02882

Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries
journal, December 2008

  • Kim, Hyunjung; Han, Byunghee; Choo, Jaebum
  • Angewandte Chemie, Vol. 120, Issue 52
  • DOI: 10.1002/ange.200804355

Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy
journal, June 2013

  • Nie, Mengyun; Abraham, Daniel P.; Chen, Yanjing
  • The Journal of Physical Chemistry C, Vol. 117, Issue 26
  • DOI: 10.1021/jp404155y

Nest-like Silicon Nanospheres for High-Capacity Lithium Storage
journal, November 2007


High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

XRD study of phase transformations in lithiated graphite anodes by Rietveld method
journal, May 2017

  • Missyul, Alexander; Bolshakov, Ivan; Shpanchenko, Roman
  • Powder Diffraction, Vol. 32, Issue S1
  • DOI: 10.1017/S0885715617000458

The Atomic Scale Electrochemical Lithiation and Delithiation Process of Silicon
journal, September 2017

  • Cao, Chuntian; Steinrück, Hans-Georg; Shyam, Badri
  • Advanced Materials Interfaces, Vol. 4, Issue 22
  • DOI: 10.1002/admi.201700771

In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy
journal, April 2016


Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries
journal, January 2018

  • Cao, Peng-Fei; Naguib, Michael; Du, Zhijia
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 4
  • DOI: 10.1021/acsami.7b13205

Dynamic study of Li intercalation into graphite by in situ high energy synchrotron XRD
journal, March 2013


The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries
journal, January 2011

  • Oumellal, Y.; Delpuech, N.; Mazouzi, D.
  • Journal of Materials Chemistry, Vol. 21, Issue 17
  • DOI: 10.1039/c1jm10213c

Capacity Fade and Its Mitigation in Li-Ion Cells with Silicon-Graphite Electrodes
journal, September 2017

  • Bareño, Javier; Shkrob, Ilya A.; Gilbert, James A.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 38
  • DOI: 10.1021/acs.jpcc.7b06118

Intercalation Compounds from LiH and Graphite: Relative Stability of Metastable Stages and Thermodynamic Stability of Dilute Stage I d
journal, March 2015


Phase diagram of Li x C 6
journal, November 1991


Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries
journal, September 1999


Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms
journal, January 2011

  • Key, Baris; Morcrette, Mathieu; Tarascon, Jean-Marie
  • Journal of the American Chemical Society, Vol. 133, Issue 3
  • DOI: 10.1021/ja108085d

Calendar-life versus cycle-life aging of lithium-ion cells with silicon-graphite composite electrodes
journal, August 2018


Lithium reactions with intermetallic-compound electrodes
journal, August 2002


Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model
journal, January 2014

  • Radvanyi, Etienne; Porcher, Willy; De Vito, Eric
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 32
  • DOI: 10.1039/C4CP02324B

Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries
journal, June 2006


Layered Oxide, Graphite and Silicon-Graphite Electrodes for Lithium-Ion Cells: Effect of Electrolyte Composition and Cycling Windows
journal, October 2016

  • Klett, Matilda; Gilbert, James A.; Pupek, Krzysztof Z.
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0131701jes

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Morphological Changes of Silicon Nanoparticles and the Influence of Cutoff Potentials in Silicon-Graphite Electrodes
journal, January 2018

  • Wetjen, Morten; Solchenbach, Sophie; Pritzl, Daniel
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.1261807jes

Mussel-Inspired Conductive Polymer Binder for Si-Alloy Anode in Lithium-Ion Batteries
journal, January 2018

  • Zhao, Hui; Wei, Yang; Wang, Cheng
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 6
  • DOI: 10.1021/acsami.7b14645

Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

Silicon nanowire anode: Improved battery life with capacity-limited cycling
journal, May 2012


Performance of Full Cells Containing Carbonate-Based LiFSI Electrolytes and Silicon-Graphite Negative Electrodes
journal, December 2015

  • Trask, Stephen E.; Pupek, Krzysztof Z.; Gilbert, James A.
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0981602jes

Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries
journal, December 2008

  • Kim, Hyunjung; Han, Byunghee; Choo, Jaebum
  • Angewandte Chemie International Edition, Vol. 47, Issue 52, p. 10151-10154
  • DOI: 10.1002/anie.200804355

High-performance lithium battery anodes using silicon nanowires
book, October 2010

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, p. 187-191
  • DOI: 10.1142/9789814317665_0026

Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
text, January 2016

  • Michan, Alison L.; Divitini, Giorgio; Pell, Andrew J.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.688

Works referencing / citing this record: