skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Layered oxide, graphite and silicon-graphite electrodes for Lithium-ion cells: Effect of electrolyte composition and cycling windows

Abstract

The electrochemical performance of cells with a Li1.03(Ni0.5Co0.2Mn0.3)0.97O2 (NCM523) positive electrode and a blended silicon-graphite (Si-Gr) negative electrode are investigated using various electrolyte compositions and voltage cycling windows. Voltage profiles of the blended Si-Gr electrode show a superposition of graphite potential plateaus on a sloped Si profile with a large potential hysteresis. The effect of this hysteresis is seen in the cell impedance versus voltage data, which are distinctly different for the charge and discharge cycles. We confirm that the addition of compounds, such as vinylene carbonate (VC) and fluoroethylene carbonate (FEC) to the baseline 1.2 M LiPF6 in ethylene carbonate (EC): ethyl methyl carbonate (EMC) (3:7 w/w) electrolyte, improves cell capacity retention with higher retention seen at higher additive contents. We show that reducing the lower cutoff voltage (LCV) of full cells to 2.5 V increases the Si-Gr electrode potential to 1.12 V vs. Li/Li+; this relatively-high delithiation potential correlates with the lower capacity retention displayed by the cell. Hence, we show that raising the upper cutoff voltage (UCV) can increase cell energy density without significantly altering capacity retention over 100 charge discharge cycles.

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1339644
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 164; Journal Issue: 1; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE; NCM523 oxide; silicon-graphite blends; cycling windows; electrolyte compositions; fluoroethylene carbonate; reference electrode; vinylene carbonate

Citation Formats

Klett, Matilda, Gilbert, James A., Pupek, Krzysztof Z., Trask, Stephen E., and Abraham, Daniel P. Layered oxide, graphite and silicon-graphite electrodes for Lithium-ion cells: Effect of electrolyte composition and cycling windows. United States: N. p., 2016. Web. doi:10.1149/2.0131701jes.
Klett, Matilda, Gilbert, James A., Pupek, Krzysztof Z., Trask, Stephen E., & Abraham, Daniel P. Layered oxide, graphite and silicon-graphite electrodes for Lithium-ion cells: Effect of electrolyte composition and cycling windows. United States. doi:10.1149/2.0131701jes.
Klett, Matilda, Gilbert, James A., Pupek, Krzysztof Z., Trask, Stephen E., and Abraham, Daniel P. Fri . "Layered oxide, graphite and silicon-graphite electrodes for Lithium-ion cells: Effect of electrolyte composition and cycling windows". United States. doi:10.1149/2.0131701jes. https://www.osti.gov/servlets/purl/1339644.
@article{osti_1339644,
title = {Layered oxide, graphite and silicon-graphite electrodes for Lithium-ion cells: Effect of electrolyte composition and cycling windows},
author = {Klett, Matilda and Gilbert, James A. and Pupek, Krzysztof Z. and Trask, Stephen E. and Abraham, Daniel P.},
abstractNote = {The electrochemical performance of cells with a Li1.03(Ni0.5Co0.2Mn0.3)0.97O2 (NCM523) positive electrode and a blended silicon-graphite (Si-Gr) negative electrode are investigated using various electrolyte compositions and voltage cycling windows. Voltage profiles of the blended Si-Gr electrode show a superposition of graphite potential plateaus on a sloped Si profile with a large potential hysteresis. The effect of this hysteresis is seen in the cell impedance versus voltage data, which are distinctly different for the charge and discharge cycles. We confirm that the addition of compounds, such as vinylene carbonate (VC) and fluoroethylene carbonate (FEC) to the baseline 1.2 M LiPF6 in ethylene carbonate (EC): ethyl methyl carbonate (EMC) (3:7 w/w) electrolyte, improves cell capacity retention with higher retention seen at higher additive contents. We show that reducing the lower cutoff voltage (LCV) of full cells to 2.5 V increases the Si-Gr electrode potential to 1.12 V vs. Li/Li+; this relatively-high delithiation potential correlates with the lower capacity retention displayed by the cell. Hence, we show that raising the upper cutoff voltage (UCV) can increase cell energy density without significantly altering capacity retention over 100 charge discharge cycles.},
doi = {10.1149/2.0131701jes},
journal = {Journal of the Electrochemical Society},
number = 1,
volume = 164,
place = {United States},
year = {2016},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells
journal, January 2012


Reversible Cycling of Crystalline Silicon Powder
journal, January 2007

  • Obrovac, M. N.; Krause, L. J.
  • Journal of The Electrochemical Society, Vol. 154, Issue 2
  • DOI: 10.1149/1.2402112

Towards the realistic silicon/carbon composite for Li-ion secondary battery anode
journal, October 2014

  • Kierzek, Krzysztof; Machnikowski, Jacek; Béguin, François
  • Journal of Applied Electrochemistry, Vol. 45, Issue 1
  • DOI: 10.1007/s10800-014-0754-3

Electrochemistry of Cu x Si 1−x Alloys in Li Cells
journal, January 2016

  • Du, Zhijia; Liu, Hui; Ellis, S. N.
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0811607jes

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

Evaluating Si-Based Materials for Li-Ion Batteries in Commercially Relevant Negative Electrodes
journal, January 2014

  • Chevrier, Vincent L.; Liu, Li; Le, Dinh Ba
  • Journal of The Electrochemical Society, Vol. 161, Issue 5
  • DOI: 10.1149/2.066405jes

Chemical Vapor Deposited Silicon∕Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries
journal, January 2005

  • Holzapfel, M.; Buqa, H.; Krumeich, F.
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 10
  • DOI: 10.1149/1.2030448

Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid
journal, October 2010

  • Magasinski, Alexandre; Zdyrko, Bogdan; Kovalenko, Igor
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 11
  • DOI: 10.1021/am100871y

Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries
journal, January 2014

  • Nguyen, Cao Cuong; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0731412jes

Predicting and Extending the Lifetime of Li-Ion Batteries
journal, January 2013

  • Burns, J. C.; Kassam, Adil; Sinha, N. N.
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.060309jes

Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes
journal, January 2012

  • Dalavi, Swapnil; Guduru, Pradeep; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 159, Issue 5
  • DOI: 10.1149/2.076205jes

Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability
journal, April 2011


Factors influencing cycle-life of full Li-ion cell built from Si/C composite as anode and conventional cathodic material
journal, February 2016


Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life
journal, July 2011

  • Yao, Yan; McDowell, Matthew T.; Ryu, Ill
  • Nano Letters, Vol. 11, Issue 7, p. 2949-2954
  • DOI: 10.1021/nl201470j

The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode
journal, March 2014


Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries
journal, January 2016

  • Jung, Roland; Metzger, Michael; Haering, Dominik
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.0951608jes

Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode
journal, October 2006


Performance of Full Cells Containing Carbonate-Based LiFSI Electrolytes and Silicon-Graphite Negative Electrodes
journal, December 2015

  • Trask, Stephen E.; Pupek, Krzysztof Z.; Gilbert, James A.
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0981602jes

In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon
journal, January 2010

  • Sethuraman, V. A.; Srinivasan, V.; Bower, A. F.
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3489378

Studies of the Capacity Fade Mechanisms of LiCoO 2 /Si-Alloy: Graphite Cells
journal, January 2016

  • Petibon, R.; Chevrier, V. L.; Aiken, C. P.
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0191607jes

Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries
journal, January 2016

  • Malliakas, Christos D.; Leung, Kevin; Pupek, Krzysztof Z.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 16
  • DOI: 10.1039/c6cp01157h

Silicon/Graphite Composite Electrodes for High-Capacity Anodes: Influence of Binder Chemistry on Cycling Stability
journal, January 2008

  • Hochgatterer, N. S.; Schweiger, M. R.; Koller, S.
  • Electrochemical and Solid-State Letters, Vol. 11, Issue 5
  • DOI: 10.1149/1.2888173

Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes
journal, December 2011

  • Etacheri, Vinodkumar; Haik, Ortal; Goffer, Yossi
  • Langmuir, Vol. 28, Issue 1
  • DOI: 10.1021/la203712s

Electrode Behavior RE-Visited: Monitoring Potential Windows, Capacity Loss, and Impedance Changes in Li 1.03 (Ni 0.5 Co 0.2 Mn 0.3 ) 0.97 O 2 /Silicon-Graphite Full Cells
journal, January 2016

  • Klett, Matilda; Gilbert, James A.; Trask, Stephen E.
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0271606jes

Electrochemical properties of non-nano-silicon negative electrodes prepared with a polyimide binder
journal, January 2015


What Makes Fluoroethylene Carbonate Different?
journal, June 2015

  • Shkrob, Ilya A.; Wishart, James F.; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 27
  • DOI: 10.1021/acs.jpcc.5b03591

Mixed silicon–graphite composites as anode material for lithium ion batteries
journal, September 2004


Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
journal, January 2012

  • Liu, Xiao Hua; Zhong, Li; Huang, Shan
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204476h

Application of a lithium–tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells
journal, October 2004


Alloy Negative Electrodes for Li-Ion Batteries
journal, October 2014

  • Obrovac, M. N.; Chevrier, V. L.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500207g

A High-Energy Li-Ion Battery Using a Silicon-Based Anode and a Nano-Structured Layered Composite Cathode
journal, February 2014

  • Chae, Changju; Noh, Hyung-Joo; Lee, Jung Kyoo
  • Advanced Functional Materials, Vol. 24, Issue 20
  • DOI: 10.1002/adfm.201303766

Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders
journal, July 2013

  • Erk, Christoph; Brezesinski, Torsten; Sommer, Heino
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 15
  • DOI: 10.1021/am401642c

Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries
journal, June 2011

  • Komaba, Shinichi; Shimomura, Keiji; Yabuuchi, Naoaki
  • The Journal of Physical Chemistry C, Vol. 115, Issue 27
  • DOI: 10.1021/jp201691g

Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

A Comparative Study of Vinylene Carbonate and Fluoroethylene Carbonate Additives for LiCoO 2 /Graphite Pouch Cells
journal, January 2014

  • Wang, David Yaohui; Sinha, N. N.; Burns, J. C.
  • Journal of The Electrochemical Society, Vol. 161, Issue 4
  • DOI: 10.1149/2.001404jes

    Works referencing / citing this record:

    Differentiating the Degradation Phenomena in Silicon-Graphite Electrodes for Lithium-Ion Batteries
    journal, January 2017

    • Wetjen, Morten; Pritzl, Daniel; Jung, Roland
    • Journal of The Electrochemical Society, Vol. 164, Issue 12
    • DOI: 10.1149/2.1921712jes

    Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries
    journal, January 2018

    • Dose, W. M.; Piernas-Muñoz, M. J.; Maroni, V. A.
    • Chemical Communications, Vol. 54, Issue 29
    • DOI: 10.1039/c8cc00456k

    Operando Quantification of (De)Lithiation Behavior of Silicon-Graphite Blended Electrodes for Lithium-Ion Batteries
    journal, January 2019

    • Yao, Koffi P. C.; Okasinski, John S.; Kalaga, Kaushik
    • Advanced Energy Materials, Vol. 9, Issue 8
    • DOI: 10.1002/aenm.201803380

    Flexible Three-Dimensional Heterostructured ZnO-Co 3 O 4 on Carbon Cloth as Free-Standing Anode with Outstanding Li/Na Storage Performance
    journal, January 2018

    • Chen, Huanhui; Deng, Libo; Luo, Shan
    • Journal of The Electrochemical Society, Vol. 165, Issue 16
    • DOI: 10.1149/2.0721816jes

    Graphit‐ und‐Silicium‐Anoden für Lithiumionen‐ Hochenergiebatterien
    journal, October 2019

    • Chae, Sujong; Choi, Seong‐Hyeon; Kim, Namhyung
    • Angewandte Chemie, Vol. 132, Issue 1
    • DOI: 10.1002/ange.201902085

    Fast Charging of Li-Ion Cells: Part II. Nonlinear Contributions to Cell and Electrode Polarization
    journal, January 2019

    • Shkrob, Ilya A.; Rodrigues, Marco-Tulio Fonseca; Dees, Dennis W.
    • Journal of The Electrochemical Society, Vol. 166, Issue 14
    • DOI: 10.1149/2.0561914jes

    Assessment of Li-Inventory in Cycled Si-Graphite Anodes Using LiFePO 4 as a Diagnostic Cathode
    journal, January 2018

    • Dose, Wesley M.; Maroni, Victor A.; Piernas-Muñoz, Maria Jose
    • Journal of The Electrochemical Society, Vol. 165, Issue 10
    • DOI: 10.1149/2.1271810jes

    Analysis of Degradation of Si/Carbon||LiNi 0.5 Mn 0.3 Co 0.2 O 2 Full Cells: Effect of Prelithiation
    journal, January 2019

    • Rezqita, Arlavinda; Kathribail, Anish-Raj; Kahr, Jürgen
    • Journal of The Electrochemical Society, Vol. 166, Issue 3
    • DOI: 10.1149/2.0671903jes

    Morphological Changes of Silicon Nanoparticles and the Influence of Cutoff Potentials in Silicon-Graphite Electrodes
    journal, January 2018

    • Wetjen, Morten; Solchenbach, Sophie; Pritzl, Daniel
    • Journal of The Electrochemical Society, Vol. 165, Issue 7
    • DOI: 10.1149/2.1261807jes

    Communication—Effect of Lower Cutoff Voltage on the 1 st Cycle Performance of Silicon Electrodes
    journal, January 2019

    • Tornheim, Adam; Trask, Stephen E.; Zhang, Zhengcheng
    • Journal of The Electrochemical Society, Vol. 166, Issue 2
    • DOI: 10.1149/2.0111902jes

    Interfacially Induced Cascading Failure in Graphite‐Silicon Composite Anodes
    journal, December 2018


    Crosslinked Chitosan Networks as Binders for Silicon/Graphite Composite Electrodes in Li-Ion Batteries
    journal, January 2018

    • Zhao, Xiuyun; Yim, Chae-Ho; Du, Naiying
    • Journal of The Electrochemical Society, Vol. 165, Issue 5
    • DOI: 10.1149/2.114805jes

    Integration of Graphite and Silicon Anodes for the Commercialization of High‐Energy Lithium‐Ion Batteries
    journal, January 2020

    • Chae, Sujong; Choi, Seong‐Hyeon; Kim, Namhyung
    • Angewandte Chemie International Edition, Vol. 59, Issue 1
    • DOI: 10.1002/anie.201902085

    Quantifying lithium concentration gradients in the graphite electrode of Li-ion cells using operando energy dispersive X-ray diffraction
    journal, January 2019

    • Yao, Koffi P. C.; Okasinski, John S.; Kalaga, Kaushik
    • Energy & Environmental Science, Vol. 12, Issue 2
    • DOI: 10.1039/c8ee02373e

    Lithium Oxalate as Capacity and Cycle-Life Enhancer in LNMO/Graphite and LNMO/SiG Full Cells
    journal, January 2018

    • Solchenbach, Sophie; Wetjen, Morten; Pritzl, Daniel
    • Journal of The Electrochemical Society, Vol. 165, Issue 3
    • DOI: 10.1149/2.0611803jes