DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: From Microparticles to Nanowires and Back: Radical Transformations in Plated Li Metal Morphology Revealed via in Situ Scanning Electron Microscopy

Abstract

We report that Li metal is the preferred anode material for all-solid-state Li batteries. However, a stable plating and stripping of Li metal at the anode–solid electrolyte interface remains a significant challenge particularly at practically feasible current densities. This problem usually relates to high and/or inhomogeneous Li-electrode–electrolyte interfacial impedance and formation and growth of high-aspect-ratio dendritic Li deposits at the electrode–electrolyte interface, which eventually shunt the battery. To better understand details of Li metal plating, we use operando electron microscopy and Auger spectroscopy to probe nucleation, growth, and stripping of Li metal during cycling of a model solid-state Li battery as a function of current density and oxygen pressure. We find a linear correlation between the nucleation density of Li clusters and the charging rate in an ultrahigh vacuum, which agrees with a classical nucleation and growth model. Moreover, the trace amount of oxidizing gas (≈10–6 Pa of O2) promotes the Li growth in a form of nanowires due to a fine balance between the ion current density and a growth rate of a thin lithium-oxide shell on the surface of the metallic Li. Interestingly, increasing the partial pressure of O2 to 10–5 Pa resumes Li plating in a formmore » of 3D particles. In conclusion, our results demonstrate the importance of trace amounts of preexisting or ambient oxidizing species on lithiation processes in solid-state batteries.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2];  [3]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [2]
  1. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Univ. of Maryland, College Park, MD (United States)
  2. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
  3. Michigan State Univ., East Lansing, MI (United States)
  4. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  5. Univ. of Maryland, College Park, MD (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-CA), Livermore, CA (United States); Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1485830
Report Number(s):
SAND-2018-11517J
Journal ID: ISSN 1530-6984; 669387
Grant/Contract Number:  
AC04-94AL85000; EE0007803; SC0001160
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 18; Journal Issue: 3; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; all-solid-state batteries; carbon anode; In situ; lithium plating; scanning electron microscopy

Citation Formats

Yulaev, Alexander, Oleshko, Vladimir, Haney, Paul, Liu, Jialin, Qi, Yue, Talin, A. Alec, Leite, Marina S., and Kolmakov, Andrei. From Microparticles to Nanowires and Back: Radical Transformations in Plated Li Metal Morphology Revealed via in Situ Scanning Electron Microscopy. United States: N. p., 2018. Web. doi:10.1021/acs.nanolett.7b04518.
Yulaev, Alexander, Oleshko, Vladimir, Haney, Paul, Liu, Jialin, Qi, Yue, Talin, A. Alec, Leite, Marina S., & Kolmakov, Andrei. From Microparticles to Nanowires and Back: Radical Transformations in Plated Li Metal Morphology Revealed via in Situ Scanning Electron Microscopy. United States. https://doi.org/10.1021/acs.nanolett.7b04518
Yulaev, Alexander, Oleshko, Vladimir, Haney, Paul, Liu, Jialin, Qi, Yue, Talin, A. Alec, Leite, Marina S., and Kolmakov, Andrei. Sat . "From Microparticles to Nanowires and Back: Radical Transformations in Plated Li Metal Morphology Revealed via in Situ Scanning Electron Microscopy". United States. https://doi.org/10.1021/acs.nanolett.7b04518. https://www.osti.gov/servlets/purl/1485830.
@article{osti_1485830,
title = {From Microparticles to Nanowires and Back: Radical Transformations in Plated Li Metal Morphology Revealed via in Situ Scanning Electron Microscopy},
author = {Yulaev, Alexander and Oleshko, Vladimir and Haney, Paul and Liu, Jialin and Qi, Yue and Talin, A. Alec and Leite, Marina S. and Kolmakov, Andrei},
abstractNote = {We report that Li metal is the preferred anode material for all-solid-state Li batteries. However, a stable plating and stripping of Li metal at the anode–solid electrolyte interface remains a significant challenge particularly at practically feasible current densities. This problem usually relates to high and/or inhomogeneous Li-electrode–electrolyte interfacial impedance and formation and growth of high-aspect-ratio dendritic Li deposits at the electrode–electrolyte interface, which eventually shunt the battery. To better understand details of Li metal plating, we use operando electron microscopy and Auger spectroscopy to probe nucleation, growth, and stripping of Li metal during cycling of a model solid-state Li battery as a function of current density and oxygen pressure. We find a linear correlation between the nucleation density of Li clusters and the charging rate in an ultrahigh vacuum, which agrees with a classical nucleation and growth model. Moreover, the trace amount of oxidizing gas (≈10–6 Pa of O2) promotes the Li growth in a form of nanowires due to a fine balance between the ion current density and a growth rate of a thin lithium-oxide shell on the surface of the metallic Li. Interestingly, increasing the partial pressure of O2 to 10–5 Pa resumes Li plating in a form of 3D particles. In conclusion, our results demonstrate the importance of trace amounts of preexisting or ambient oxidizing species on lithiation processes in solid-state batteries.},
doi = {10.1021/acs.nanolett.7b04518},
journal = {Nano Letters},
number = 3,
volume = 18,
place = {United States},
year = {Sat Feb 03 00:00:00 EST 2018},
month = {Sat Feb 03 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12
journal, October 2015


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12
journal, March 2017


Origin of lithium whisker formation and growth under stress
journal, October 2019


Self-diffusion coefficient of lithium in lithium oxide
journal, December 1979


Some fundamental aspects of levelling and brightening in metal electrodeposition
journal, July 1991

  • Oniciu, L.; Mureşan, L.
  • Journal of Applied Electrochemistry, Vol. 21, Issue 7
  • DOI: 10.1007/BF01024843

In-Situ Electron Microscope Observations of Electrochemical Li Deposition/Dissolution with a LiPON Electrolyte
journal, January 2014


Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet
journal, July 2012

  • Ni, Jennifer E.; Case, Eldon D.; Sakamoto, Jeffrey S.
  • Journal of Materials Science, Vol. 47, Issue 23, p. 7978-7985
  • DOI: 10.1007/s10853-012-6687-5

Lithium Dendrite Formation on a Lithium Metal Anode from Liquid, Polymer and Solid Electrolytes
journal, January 2016


Interface Limited Lithium Transport in Solid-State Batteries
journal, December 2013

  • Santhanagopalan, Dhamodaran; Qian, Danna; McGilvray, Thomas
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 2
  • DOI: 10.1021/jz402467x

The chemical and electrochemical stability of beta-alumina
journal, February 1986


Electromechanical Probing of Li/Li2CO3 Core/Shell Particles in a TEM
journal, January 2013

  • Xiang, Bin; Wang, Lei; Liu, Gao
  • Journal of The Electrochemical Society, Vol. 160, Issue 3, p. A415-A419
  • DOI: 10.1149/2.018303jes

Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium
journal, September 2014


Oxide-Assisted Growth of Semiconducting Nanowires
journal, April 2003

  • Zhang, R.-Q.; Lifshitz, Y.; Lee, S.-T.
  • Advanced Materials, Vol. 15, Issue 78, p. 635-640
  • DOI: 10.1002/adma.200301641

Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance
journal, January 2021


Fabrication, Testing, and Simulation of All-Solid-State Three-Dimensional Li-Ion Batteries
journal, November 2016

  • Talin, A. Alec; Ruzmetov, Dmitry; Kolmakov, Andrei
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 47
  • DOI: 10.1021/acsami.6b12244

Modeling the Nucleation and Growth of Li at Metal Current Collector/LiPON Interfaces
journal, January 2015

  • Motoyama, Munekazu; Ejiri, Makoto; Iriyama, Yasutoshi
  • Journal of The Electrochemical Society, Vol. 162, Issue 13
  • DOI: 10.1149/2.0051513jes

Beam-assisted large elongation of in situ formed Li2O nanowires
journal, July 2012

  • Zheng, He; Liu, Yang; Mao, Scott X.
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00542

Making Li-metal electrodes rechargeable by controlling the dendrite growth direction
journal, June 2017


Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte
journal, September 2016

  • Luo, Wei; Gong, Yunhui; Zhu, Yizhou
  • Journal of the American Chemical Society, Vol. 138, Issue 37
  • DOI: 10.1021/jacs.6b06777

Secondary electron emission in the scanning electron microscope
journal, November 1983

  • Seiler, H.
  • Journal of Applied Physics, Vol. 54, Issue 11
  • DOI: 10.1063/1.332840

Elastic, plastic, and creep mechanical properties of lithium metal
journal, October 2018

  • Masias, Alvaro; Felten, Nando; Garcia-Mendez, Regina
  • Journal of Materials Science, Vol. 54, Issue 3
  • DOI: 10.1007/s10853-018-2971-3

Interactions between Lithium Growths and Nanoporous Ceramic Separators
journal, November 2018


The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution
journal, September 2010

  • Balke, Nina; Jesse, Stephen; Kim, Yoongu
  • Nano Letters, Vol. 10, Issue 9
  • DOI: 10.1021/nl101439x

Self-diffusion in solid lithium
journal, October 2010


Oxidation-assisted ductility of aluminium nanowires
journal, June 2014

  • Sen, Fatih G.; Alpas, Ahmet T.; van Duin, Adri C. T.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4959

General Relationship for the Thermal Oxidation of Silicon
journal, December 1965

  • Deal, B. E.; Grove, A. S.
  • Journal of Applied Physics, Vol. 36, Issue 12
  • DOI: 10.1063/1.1713945

Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive
journal, July 2015


Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes
journal, December 2016

  • Xu, Chen; Ahmad, Zeeshan; Aryanfar, Asghar
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 1
  • DOI: 10.1073/pnas.1615733114

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S–P2S5 solid electrolyte
journal, January 2013

  • Nagao, Motohiro; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 42
  • DOI: 10.1039/c3cp51059j

Colloquium : Cluster growth on surfaces: Densities, size distributions, and morphologies
journal, July 2013

  • Einax, Mario; Dieterich, Wolfgang; Maass, Philipp
  • Reviews of Modern Physics, Vol. 85, Issue 3
  • DOI: 10.1103/RevModPhys.85.921

Ion‐ and electron‐assisted gas‐surface chemistry—An important effect in plasma etching
journal, May 1979

  • Coburn, J. W.; Winters, Harold F.
  • Journal of Applied Physics, Vol. 50, Issue 5
  • DOI: 10.1063/1.326355

Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates
journal, March 2018


An XPS study of the adsorption of oxygen and water vapor on clean lithium films
journal, May 1984


Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Suppression of dendritic lithium growth in lithium metal-based batteries
journal, January 2018

  • Li, Linlin; Li, Siyuan; Lu, Yingying
  • Chemical Communications, Vol. 54, Issue 50
  • DOI: 10.1039/c8cc02280a

Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries
journal, June 2017


A solid future for battery development
journal, September 2016


A new examination of secondary electron yield data
journal, January 2005

  • Lin, Yinghong; Joy, David C.
  • Surface and Interface Analysis, Vol. 37, Issue 11
  • DOI: 10.1002/sia.2107

Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal
journal, January 2017


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Surface/Interface Effects on High-Performance Thin-Film All-Solid-State Li-Ion Batteries
journal, October 2015

  • Gong, Chen; Ruzmetov, Dmitry; Pearse, Alexander
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 47
  • DOI: 10.1021/acsami.5b07058

Atomic Insight into the Lithium Storage and Diffusion Mechanism of SiO 2 /Al 2 O 3 Electrodes of Lithium Ion Batteries: ReaxFF Reactive Force Field Modeling
journal, March 2016

  • Ostadhossein, Alireza; Kim, Sung-Yup; Cubuk, Ekin D.
  • The Journal of Physical Chemistry A, Vol. 120, Issue 13
  • DOI: 10.1021/acs.jpca.5b11908

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments
journal, July 2017


A preliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid Li-ionconductors
journal, April 2013


The Effect of Tension on the Electrical Resistance of Certain Abnormal Metals
journal, January 1922

  • Bridgman, P. W.
  • Proceedings of the American Academy of Arts and Sciences, Vol. 57, Issue 3
  • DOI: 10.2307/20025885

Mechanical Deformation of a Lithium-Metal Anode Due to a Very Stiff Separator
journal, January 2014

  • Ferrese, Anthony; Newman, John
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.0911409jes

Insights into capacity loss mechanisms of all-solid-state Li-ion batteries with Al anodes
journal, January 2014

  • Leite, Marina S.; Ruzmetov, Dmitry; Li, Zhipeng
  • J. Mater. Chem. A, Vol. 2, Issue 48
  • DOI: 10.1039/C4TA03716B

Self-heating–induced healing of lithium dendrites
journal, March 2018


In Situ Scanning Electron Microscopy Characterization of the Mechanism for Li Dendrite Growth
journal, January 2016

  • Tang, Ching-Yen; Dillon, Shen J.
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.0891608jes

Air-Stable Lithium Spheres Produced by Electrochemical Plating
journal, August 2018


Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte
journal, August 2015


Thin-film lithium and lithium-ion batteries
journal, November 2000


Elastic Modulus of Isotopically-Concentrated Lithium
journal, January 1960


In-Situ Cross-Sectional SEM Observations of Li Plating and Stripping on Oxide-Based-Solid-State Electrolytes
journal, September 2016

  • Tsukamoto, Ryusuke; Yonemoto, Fumihiro; Motoyama, Munekazu
  • ECS Meeting Abstracts, Vol. MA2016-02, Issue 53
  • DOI: 10.1149/MA2016-02/53/4116

Works referencing / citing this record:

Engineering stable interfaces for three-dimensional lithium metal anodes
journal, July 2018


Engineering stable interfaces for three-dimensional lithium metal anodes
journal, July 2018


Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research
journal, May 2019

  • Liu, Dongqing; Shadike, Zulipiya; Lin, Ruoqian
  • Advanced Materials, Vol. 31, Issue 28
  • DOI: 10.1002/adma.201806620

Mechanical and Electronic Stabilization of Solid Electrolyte Interphase with Sulfite Additive for Lithium Metal Batteries
journal, January 2019

  • Xu, Jiagang; Tian, Hong-Kang; Qi, Ji
  • Journal of The Electrochemical Society, Vol. 166, Issue 14
  • DOI: 10.1149/2.0331914jes

In Situ Scanning Electron Microscope Observations of Li Plating/Stripping Reactions with Pt Current Collectors on LiPON Electrolyte
journal, January 2018

  • Motoyama, Munekazu; Ejiri, Makoto; Yamamoto, Takayuki
  • Journal of The Electrochemical Society, Vol. 165, Issue 7
  • DOI: 10.1149/2.0411807jes

Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up
journal, January 2020