DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Validated simulations of dynamic crack propagation in single crystals using EFEM and XFEM

Abstract

Brittle and quasibrittle materials such as ceramics and geomaterials fail through dynamic crack propagation during impact events. Simulations of such events are important in a number of applications. In this paper, we compare the effectiveness of the embedded finite element method (EFEM) and the extended finite element method (XFEM) in modeling dynamic crack propagation by validating each approach against an impact experiment performed on single crystal quartz together with in-situ imaging of the dynamic fracture using X-ray phase contrast imaging (XPCI). The experiment is conducted in a Kolsky bar (generating a strain rate on the order of 103 s-1) that is operated at the synchrotron facilities at the advanced photon source (APS). The in situ XPCI technique can record the dynamic crack propagation with micron-scale spatial resolution and sub-microsecond temporal resolution, and the corresponding images are used to extract the time-resolved crack propagation path and velocity. A unified framework is first presented for the dynamic discretization formulations of EFEM and XFEM. This framework clarifies the differences between the two methods in enrichment techniques and numerical solution schemes. In both cases, a cohesive law is used to describe the fracture process after crack initiation. The simulations of the dynamic fracture experimentmore » using the two simulation approaches are compared with the in situ experimental observations and measurements. Finally, the performance of each method is discussed with respect to capturing the early crack propagation process.« less

Authors:
 [1];  [1];  [1]; ORCiD logo [2];  [1];  [1]
  1. Johns Hopkins Univ., Baltimore, MD (United States)
  2. Johns Hopkins Univ., Baltimore, MD (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1484639
Report Number(s):
LA-UR-18-21043
Journal ID: ISSN 0376-9429
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
International Journal of Fracture
Additional Journal Information:
Journal Volume: 215; Journal Issue: 1-2; Journal ID: ISSN 0376-9429
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Dynamic fracture; damage; crack velocity; x-ray phase contrast imaging

Citation Formats

Zeng, Q., Motamedi, M. H., Leong, A .F. T., Daphalapurkar, Nitin Pandurang, Hufnagel, T. C., and Ramesh, K. T. Validated simulations of dynamic crack propagation in single crystals using EFEM and XFEM. United States: N. p., 2018. Web. doi:10.1007/s10704-018-0330-7.
Zeng, Q., Motamedi, M. H., Leong, A .F. T., Daphalapurkar, Nitin Pandurang, Hufnagel, T. C., & Ramesh, K. T. Validated simulations of dynamic crack propagation in single crystals using EFEM and XFEM. United States. https://doi.org/10.1007/s10704-018-0330-7
Zeng, Q., Motamedi, M. H., Leong, A .F. T., Daphalapurkar, Nitin Pandurang, Hufnagel, T. C., and Ramesh, K. T. Sat . "Validated simulations of dynamic crack propagation in single crystals using EFEM and XFEM". United States. https://doi.org/10.1007/s10704-018-0330-7. https://www.osti.gov/servlets/purl/1484639.
@article{osti_1484639,
title = {Validated simulations of dynamic crack propagation in single crystals using EFEM and XFEM},
author = {Zeng, Q. and Motamedi, M. H. and Leong, A .F. T. and Daphalapurkar, Nitin Pandurang and Hufnagel, T. C. and Ramesh, K. T.},
abstractNote = {Brittle and quasibrittle materials such as ceramics and geomaterials fail through dynamic crack propagation during impact events. Simulations of such events are important in a number of applications. In this paper, we compare the effectiveness of the embedded finite element method (EFEM) and the extended finite element method (XFEM) in modeling dynamic crack propagation by validating each approach against an impact experiment performed on single crystal quartz together with in-situ imaging of the dynamic fracture using X-ray phase contrast imaging (XPCI). The experiment is conducted in a Kolsky bar (generating a strain rate on the order of 103 s-1) that is operated at the synchrotron facilities at the advanced photon source (APS). The in situ XPCI technique can record the dynamic crack propagation with micron-scale spatial resolution and sub-microsecond temporal resolution, and the corresponding images are used to extract the time-resolved crack propagation path and velocity. A unified framework is first presented for the dynamic discretization formulations of EFEM and XFEM. This framework clarifies the differences between the two methods in enrichment techniques and numerical solution schemes. In both cases, a cohesive law is used to describe the fracture process after crack initiation. The simulations of the dynamic fracture experiment using the two simulation approaches are compared with the in situ experimental observations and measurements. Finally, the performance of each method is discussed with respect to capturing the early crack propagation process.},
doi = {10.1007/s10704-018-0330-7},
journal = {International Journal of Fracture},
number = 1-2,
volume = 215,
place = {United States},
year = {Sat Nov 17 00:00:00 EST 2018},
month = {Sat Nov 17 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of random defects on dynamic fracture in quasi-brittle materials
journal, August 2017

  • Abedi, Reza; Haber, Robert B.; Clarke, Philip L.
  • International Journal of Fracture, Vol. 208, Issue 1-2
  • DOI: 10.1007/s10704-017-0243-x

Non-linear analysis of shells with arbitrary evolving cracks using XFEM
journal, January 2005

  • Areias, Pedro M. A.; Belytschko, Ted
  • International Journal for Numerical Methods in Engineering, Vol. 62, Issue 3
  • DOI: 10.1002/nme.1192

Numerical simulation of dynamic fracture using finite elements with embedded discontinuities
journal, October 2009


Concrete fracture models: testing and practice
journal, January 2002


Elastic and Piezoelectric Constants of Alpha-Quartz
journal, June 1958


Elastic crack growth in finite elements with minimal remeshing
journal, June 1999


Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment
journal, January 2003

  • Belytschko, Ted; Chen, Hao; Xu, Jingxiao
  • International Journal for Numerical Methods in Engineering, Vol. 58, Issue 12
  • DOI: 10.1002/nme.941

A three-dimensional cohesive-frictional grain-boundary micromechanical model for intergranular degradation and failure in polycrystalline materials
journal, October 2013

  • Benedetti, I.; Aliabadi, M. H.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 265
  • DOI: 10.1016/j.cma.2013.05.023

A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation
journal, December 2000


Assumed enhanced strain and the extended finite element methods: A unification of concepts
journal, June 2008

  • Borja, Ronaldo I.
  • Computer Methods in Applied Mechanics and Engineering, Vol. 197, Issue 33-40
  • DOI: 10.1016/j.cma.2008.01.019

Computational modelling of impact damage in brittle materials
journal, August 1996


Mesh-independent discrete numerical representations of cohesive-zone models
journal, January 2006


A comparative study on the modelling of discontinuous fracture by means of enriched nodal and element techniques and interface elements
journal, November 2009

  • Dias-da-Costa, D.; Alfaiate, J.; Sluys, L. J.
  • International Journal of Fracture, Vol. 161, Issue 1
  • DOI: 10.1007/s10704-009-9432-6

An extended finite element method for modeling crack growth with frictional contact
journal, October 2001

  • Dolbow, John; Moës, Nicolas; Belytschko, Ted
  • Computer Methods in Applied Mechanics and Engineering, Vol. 190, Issue 51-52
  • DOI: 10.1016/S0045-7825(01)00260-2

Instability in dynamic fracture
journal, July 1991


Wave Propagation in the Split Hopkinson Pressure Bar
journal, January 1983

  • Follansbee, P. S.; Frantz, C.
  • Journal of Engineering Materials and Technology, Vol. 105, Issue 1
  • DOI: 10.1115/1.3225620

A discrete crack approach to normal/shear cracking of concrete
journal, October 2002


A finite element method for the simulation of strong and weak discontinuities in solid mechanics
journal, August 2004

  • Hansbo, Anita; Hansbo, Peter
  • Computer Methods in Applied Mechanics and Engineering, Vol. 193, Issue 33-35
  • DOI: 10.1016/j.cma.2003.12.041

Cohesive force across the tip of a longitudinal-shear crack and Griffith's specific surface energy
journal, July 1972


IEEE Standard on Piezoelectricity
standard, January 1988


Cleavage of natural and synthetic single crystal quartz
journal, September 1987


[水晶,サファイア単結晶の室温における破壊じん性]<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1981-01-01">January 1981</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Iwasa, Mikio; Ueno, Tsutomu; Bradt, R. C.</span> </li> <li> Journal of the Society of Materials Science, Japan, Vol. 30, Issue 337</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2472/jsms.30.1001" class="text-muted" target="_blank" rel="noopener noreferrer">10.2472/jsms.30.1001<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0045-7825(99)00154-1" target="_blank" rel="noopener noreferrer" class="name">Comparative study on finite elements with embedded discontinuities<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2000-07-01">July 2000</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Jirásek, Milan</span> </li> <li> Computer Methods in Applied Mechanics and Engineering, Vol. 188, Issue 1-3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0045-7825(99)00154-1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0045-7825(99)00154-1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/nme.4744" target="_blank" rel="noopener noreferrer" class="name">Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements: ADAPTIVE SPLITTING OF POLYGONAL FINITE ELEMENTS<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-08-11">August 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Leon, S. E.; Spring, D. W.; Paulino, G. H.</span> </li> <li> International Journal for Numerical Methods in Engineering, Vol. 100, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/nme.4744" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/nme.4744<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s11340-018-0414-3" target="_blank" rel="noopener noreferrer" class="name">Quantitative In Situ Studies of Dynamic Fracture in Brittle Solids Using Dynamic X-ray Phase Contrast Imaging<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-09-07">September 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Leong, A. F. T.; Robinson, A. K.; Fezzaa, K.</span> </li> <li> Experimental Mechanics, Vol. 58, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s11340-018-0414-3" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s11340-018-0414-3<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0045-7825(96)01087-0" target="_blank" rel="noopener noreferrer" class="name">The partition of unity finite element method: Basic theory and applications<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1996-12-01">December 1996</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Melenk, J. M.; Babuška, I.</span> </li> <li> Computer Methods in Applied Mechanics and Engineering, Vol. 139, Issue 1-4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0045-7825(96)01087-0" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0045-7825(96)01087-0<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/nme.1718" target="_blank" rel="noopener noreferrer" class="name">Efficient explicit time stepping for the eXtended Finite Element Method (X-FEM)<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-01-01">January 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Menouillard, T.; Réthoré, J.; Combescure, A.</span> </li> <li> International Journal for Numerical Methods in Engineering, Vol. 68, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/nme.1718" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/nme.1718<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A" target="_blank" rel="noopener noreferrer" class="name">A finite element method for crack growth without remeshing<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1999-09-10">September 1999</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Moës, Nicolas; Dolbow, John; Belytschko, Ted</span> </li> <li> International Journal for Numerical Methods in Engineering, Vol. 46, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.ijsolstr.2016.02.002" target="_blank" rel="noopener noreferrer" class="name">Numerical simulation of mixed mode (I and II) fracture behavior of pre-cracked rock using the strong discontinuity approach<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-05-01">May 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Motamedi, M. H.; Weed, D. A.; Foster, C. D.</span> </li> <li> International Journal of Solids and Structures, Vol. 85-86</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.ijsolstr.2016.02.002" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.ijsolstr.2016.02.002<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E" target="_blank" rel="noopener noreferrer" class="name">Modelling Strong Discontinuities in Solid Mechanics via Strain Softening Constitutive Equations. part 1: Fundamentals<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1996-11-15">November 1996</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Oliver, J.</span> </li> <li> International Journal for Numerical Methods in Engineering, Vol. 39, Issue 21</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0013-7944(01)00060-1" target="_blank" rel="noopener noreferrer" class="name">From continuum mechanics to fracture mechanics: the strong discontinuity approach<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2002-01-01">January 2002</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Oliver, J.; Huespe, A. E.; Pulido, M. D. G.</span> </li> <li> Engineering Fracture Mechanics, Vol. 69, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0013-7944(01)00060-1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0013-7944(01)00060-1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.cma.2005.09.020" target="_blank" rel="noopener noreferrer" class="name">A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-07-01">July 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Oliver, J.; Huespe, A. E.; Sánchez, P. J.</span> </li> <li> Computer Methods in Applied Mechanics and Engineering, Vol. 195, Issue 37-40</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.cma.2005.09.020" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.cma.2005.09.020<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7" target="_blank" rel="noopener noreferrer" class="name">Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1999-03-30">March 1999</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Ortiz, M.; Pandolfi, A.</span> </li> <li> International Journal for Numerical Methods in Engineering, Vol. 44, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1155/2013/849231" target="_blank" rel="noopener noreferrer" class="name">Computational Methods for Fracture in Brittle and Quasi-Brittle Solids: State-of-the-Art Review and Future Perspectives<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-01-01">January 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Rabczuk, Timon</span> </li> <li> ISRN Applied Mathematics, Vol. 2013</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1155/2013/849231" class="text-muted" target="_blank" rel="noopener noreferrer">10.1155/2013/849231<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/BF00017967" target="_blank" rel="noopener noreferrer" class="name">Mechanics of crack curving and branching ? a dynamic fracture analysis<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1985-01-01">January 1985</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Ramulu, M.; Kobayashi, A. S.</span> </li> <li> International Journal of Fracture, Vol. 27, Issue 3-4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/BF00017967" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/BF00017967<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/nme.4731" target="_blank" rel="noopener noreferrer" class="name">Simulating curvilinear crack propagation in two dimensions with universal meshes: SIMULATING CURVILINEAR CRACK PROPAGATION WITH UNIVERSAL MESHES<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-08-18">August 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Rangarajan, Ramsharan; Chiaramonte, Maurizio M.; Hunsweck, Michael J.</span> </li> <li> International Journal for Numerical Methods in Engineering, Vol. 102, Issue 3-4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/nme.4731" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/nme.4731<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/2014JB011624" target="_blank" rel="noopener noreferrer" class="name">Fracture propagation in Indiana Limestone interpreted via linear softening cohesive fracture model: Fracture Interpreted via Cohesive Model<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-04-01">April 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Rinehart, Alex J.; Bishop, Joseph E.; Dewers, Thomas</span> </li> <li> Journal of Geophysical Research: Solid Earth, Vol. 120, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/2014JB011624" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/2014JB011624<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/nme.4814" target="_blank" rel="noopener noreferrer" class="name">Combined continuum damage-embedded discontinuity model for explicit dynamic fracture analyses of quasi-brittle materials: COMBINED CONTINUUM DAMAGE-EMBEDDED DISCONTINUITY MODEL<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-11-11">November 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Saksala, Timo; Brancherie, Delphine; Harari, Isaac</span> </li> <li> International Journal for Numerical Methods in Engineering, Vol. 101, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/nme.4814" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/nme.4814<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1111/j.1460-2695.2006.01076.x" target="_blank" rel="noopener noreferrer" class="name">An embedded cohesive crack model for finite element analysis of mixed mode fracture of concrete<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-12-01">December 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Sancho, J. M.; Planas, J.; GÁLvez, J. C.</span> </li> <li> Fatigue & Fracture of Engineering Materials and Structures, Vol. 29, Issue 12</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1111/j.1460-2695.2006.01076.x" class="text-muted" target="_blank" rel="noopener noreferrer">10.1111/j.1460-2695.2006.01076.x<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0013-7944(03)00133-4" target="_blank" rel="noopener noreferrer" class="name">Simulation of cup–cone fracture using the cohesive model<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2003-09-01">September 2003</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Scheider, I.; Brocks, W.</span> </li> <li> Engineering Fracture Mechanics, Vol. 70, Issue 14</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0013-7944(03)00133-4" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0013-7944(03)00133-4<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevB.54.7128" target="_blank" rel="noopener noreferrer" class="name">Microbranching instability and the dynamic fracture of brittle materials<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1996-09-01">September 1996</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Sharon, Eran; Fineberg, Jay</span> </li> <li> Physical Review B, Vol. 54, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevB.54.7128" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevB.54.7128<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/nme.1620290802" target="_blank" rel="noopener noreferrer" class="name">A class of mixed assumed strain methods and the method of incompatible modes<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1990-06-01">June 1990</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Simo, J. C.; Rifai, M. S.</span> </li> <li> International Journal for Numerical Methods in Engineering, Vol. 29, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/nme.1620290802" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/nme.1620290802<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/BF00372173" target="_blank" rel="noopener noreferrer" class="name">An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1993-01-01">January 1993</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Simo, J. C.; Oliver, J.; Armero, F.</span> </li> <li> Computational Mechanics, Vol. 12, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/BF00372173" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/BF00372173<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1115/1.3129711" target="_blank" rel="noopener noreferrer" class="name">Dynamic Fracture of Shells Subjected to Impulsive Loads<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2009-06-12">June 2009</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Song, Jeong-Hoon; Belytschko, Ted</span> </li> <li> Journal of Applied Mechanics, Vol. 76, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1115/1.3129711" class="text-muted" target="_blank" rel="noopener noreferrer">10.1115/1.3129711<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/nme.1652" target="_blank" rel="noopener noreferrer" class="name">A method for dynamic crack and shear band propagation with phantom nodes<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-01-01">January 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Song, Jeong-Hoon; Areias, Pedro M. A.; Belytschko, Ted</span> </li> <li> International Journal for Numerical Methods in Engineering, Vol. 67, Issue 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/nme.1652" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/nme.1652<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s00466-007-0210-x" target="_blank" rel="noopener noreferrer" class="name">A comparative study on finite element methods for dynamic fracture<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-08-15">August 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Song, Jeong-Hoon; Wang, Hongwu; Belytschko, Ted</span> </li> <li> Computational Mechanics, Vol. 42, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s00466-007-0210-x" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s00466-007-0210-x<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0045-7825(01)00215-8" target="_blank" rel="noopener noreferrer" class="name">Modeling holes and inclusions by level sets in the extended finite-element method<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2001-09-01">September 2001</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Sukumar, N.; Chopp, D. L.; Moës, N.</span> </li> <li> Computer Methods in Applied Mechanics and Engineering, Vol. 190, Issue 46-47</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0045-7825(01)00215-8" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0045-7825(01)00215-8<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1109/FREQ.1984.200732" target="_blank" rel="noopener noreferrer" class="name">The Constants of Alpha Quartz<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">conference</span>, <span class="date" data-date="1984-01-01">January 1984</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Ward, R. W.</span> </li> <li> 38th Annual Symposium on Frequency Control</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1109/FREQ.1984.200732" class="text-muted" target="_blank" rel="noopener noreferrer">10.1109/FREQ.1984.200732<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s11440-016-0474-4" target="_blank" rel="noopener noreferrer" class="name">A robust numerical framework for simulating localized failure and fracture propagation in frictional materials<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-07-08">July 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Weed, D. A.; Foster, C. D.; Motamedi, M. H.</span> </li> <li> Acta Geotechnica, Vol. 12, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s11440-016-0474-4" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s11440-016-0474-4<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0013-7944(99)00120-4" target="_blank" rel="noopener noreferrer" class="name">Application of embedded discontinuities for softening solids<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2000-01-01">January 2000</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wells, G. N.; Sluys, L. J.</span> </li> <li> Engineering Fracture Mechanics, Vol. 65, Issue 2-3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0013-7944(99)00120-4" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0013-7944(99)00120-4<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/nme.143" target="_blank" rel="noopener noreferrer" class="name">A new method for modelling cohesive cracks using finite elements<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2001-01-01">January 2001</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wells, G. N.; Sluys, L. J.</span> </li> <li> International Journal for Numerical Methods in Engineering, Vol. 50, Issue 12</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/nme.143" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/nme.143<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s00466-014-1001-9" target="_blank" rel="noopener noreferrer" class="name">Modeling of dynamic crack branching by enhanced extended finite element method<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-03-13">March 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Xu, Dandan; Liu, Zhanli; Liu, Xiaoming</span> </li> <li> Computational Mechanics, Vol. 54, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s00466-014-1001-9" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s00466-014-1001-9<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1080/14786445108561302" target="_blank" rel="noopener noreferrer" class="name">LXXV. The moving griffith crack<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1951-07-01">July 1951</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Yoffe, Elizabeth H.</span> </li> <li> The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 42, Issue 330</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1080/14786445108561302" class="text-muted" target="_blank" rel="noopener noreferrer">10.1080/14786445108561302<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s00466-017-1412-5" target="_blank" rel="noopener noreferrer" class="name">Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2017-05-04">May 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zeng, Qinglei; Liu, Zhanli; Wang, Tao</span> </li> <li> Computational Mechanics, Vol. 61, Issue 1-2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s00466-017-1412-5" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s00466-017-1412-5<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/nme.2030" target="_blank" rel="noopener noreferrer" class="name">Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-01-01">January 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zhang, Zhengyu (Jenny); Paulino, Glaucio H.; Celes, Waldemar</span> </li> <li> International Journal for Numerical Methods in Engineering, Vol. 72, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/nme.2030" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/nme.2030<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s10704-006-7135-9" target="_blank" rel="noopener noreferrer" class="name">Effects of material properties on the fragmentation of brittle materials<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-05-01">May 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zhou, Fenghua; Molinari, Jean-François; Ramesh, K. T.</span> </li> <li> International Journal of Fracture, Vol. 139, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s10704-006-7135-9" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s10704-006-7135-9<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="conference"><span class="fa fa-angle-right"></span> conference<small class="text-muted"> (1)</small></a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (56)</small></a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="standard"><span class="fa fa-angle-right"></span> standard<small class="text-muted"> (1)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_references" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1538260-arc-length-method-controlled-cohesive-crack-propagation-using-high-order-xfem-irwins-crack-closure-integral" itemprop="url">An arc-length method for controlled cohesive crack propagation using high-order XFEM and Irwin’s crack closure integral</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Wang, Yongxiang</span> ; <span class="author">Waisman, Haim</span> <span class="text-muted pubdata"> - Engineering Fracture Mechanics</span> </span> </div> <div class="abstract">Numerical modeling of cohesive crack growth in quasi-brittle materials is challenging, primarily due to the combination of (i) nonlinearity associated with the fracture process zone (FPZ), (ii) arbitrary directions to which a crack may propagate, and (iii) snap-back or snap-through instabilities encountered in the response of the structure. To address these challenges, here we propose a novel arc-length method that can follow the equilibrium path of cohesive crack propagation. The proposed approach is based on the extended finite element method (XFEM) with scalar high-order enrichment functions and Irwin’s crack closure integral, which allows for direct control of the applied loads<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> necessary to propagate cohesive cracks. This is achieved by augmenting a constraint equation written in terms of stress intensity factors (SIFs), and expressed explicitly in terms of the enriched degrees of freedom, which is an attractive feature achieved with Irwin’s integral, since SIFs can be written in closed-form. Note that singular enrichments are active in an unstable crack propagation state and automatically vanish in stable crack configurations. Furthermore, to propagate cracks in arbitrary directions, we employ a maximum circumferential stress criterion implemented by (i) direct usage of the SIFs, and by (ii) a new stress-based nonlocal implementation of this principle. Various benchmark problems including pure mode I and mixed-mode fracture are solved to demonstrate the predictive capability of the present framework for cohesive crack modeling.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 25<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1016/j.engfracmech.2018.05.018" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1538260" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1016/j.engfracmech.2018.05.018</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1538260" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1538260" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1367805-pellet-cladding-mechanical-interaction-modeling-using-extended-finite-element-method" itemprop="url">Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Conference</small><span class="authors"> <span class="author">Spencer, Benjamin W.</span> ; <span class="author">Jiang, Wen</span> ; <span class="author">Dolbow, John E.</span> ; <span class="author">...</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of the<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to model stress concentrations induced by fuel fractures at the fuel/cladding interface during pellet cladding mechanical interaction (PCMI). This is accomplished by enhancing the thermal and mechanical contact enforcement algorithms employed by BISON to permit their use in conjunction with XFEM. The results from this methodology are demonstrated to be equivalent to those from using meshed discrete cracks. While the results of the two methods are equivalent for the case of a stationary crack, it is demonstrated that XFEM provides the additional flexibility of allowing arbitrary crack initiation and propagation during the analysis, and minimizes model setup effort for cases with stationary cracks.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/1367805" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1367805" data-product-type="Conference" data-product-subtype="" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1393945-situ-observation-fracture-processes-high-strength-concretes-limestone-using-high-speed-ray-phase-contrast-imaging" itemprop="url"><i>In situ</i> observation of fracture processes in high-strength concretes and limestone using high-speed X-ray phase-contrast imaging</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Parab, Niranjan D.</span> ; <span class="author">Guo, Zherui</span> ; <span class="author">Hudspeth, Matthew</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences</span> </span> </div> <div class="abstract">The mechanical properties and fracture mechanisms of geomaterials and construction materials such as concrete are reported to be dependent on the loading rates. However, the in situ cracking inside such specimens cannot be visualized using traditional optical imaging methods since the materials are opaque. In this study, the in situ sub-surface failure/damage mechanisms in Cor-Tuf (a reactive powder concrete), a high-strength concrete (HSC) and Indiana limestone under dynamic loading were investigated using high-speed synchrotron X-ray phase-contrast imaging. Dynamic compressive loading was applied using a modified Kolsky bar and fracture images were recorded using a synchronized high-speed synchrotron X-ray imaging set-up.<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> Three-dimensional synchrotron X-ray tomography was also performed to record the microstructure of the specimens before dynamic loading. In the Cor-Tuf and HSC specimens, two different modes of cracking were observed: straight cracking or angular cracking with respect to the direction of loading. In limestone, cracks followed the grain boundaries and voids, ultimately fracturing the specimen. Cracks in HSC were more tortuous than the cracks in Cor-Tuf specimens. The effects of the microstructure on the observed cracking behaviour are discussed. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1098/rsta.2016.0178" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1393945" data-product-type="Journal Article" data-product-subtype="AC" >https://doi.org/10.1098/rsta.2016.0178</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1475567-dynamic-damage-fracture-conductive-glass-under-high-rate-compression-synchrotron-based-study" itemprop="url">Dynamic damage and fracture of a conductive glass under high-rate compression: A synchrotron based study</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Feng, Z. D.</span> ; <span class="author">Zhou, Y. H.</span> ; <span class="author">Tan, R.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Journal of Non-Crystalline Solids</span> </span> </div> <div class="abstract">Dynamic damage and fracture of conductive glass are investigated using a split Hopkinson pressure bar, implemented with in situ X-ray phase contrast imaging (XPCI) and optical imaging for comparison. Quantitative comparison between X-ray and optical images demonstrates that XPCI exhibits much higher resolution in resolving micro cracks and dynamic fracture modes. Multiple predamage and fracture modes of glass samples under dynamic loading are revealed with XPCI to depend on competing nucleation of initial flaws across scales, which give rise to a scattered fracture strength distribution. The fracture strengths increase with increasing strain rates due to accelerated crack propagation and damage<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> growth. Quantitative gray-scale statistical analysis of XPCI and optical images yields spatial and temporal evolutions of damage. Unexpected plateaus essentially without damage growth are observed on the damage curves of glass, deviating from conventional theoretical predictions. The damage plateaus are attributed to growth, closure and re-expansion of inclined main cracks, due to interactions of stress waves with crack tips. In conclusion, the current results also demonstrate a reliable experimental technique for dynamic damage characterization of brittle materials.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 6<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1016/j.jnoncrysol.2018.04.030" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1475567" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1016/j.jnoncrysol.2018.04.030</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1475567" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1475567" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1572459-simulating-fracture-notched-mortar-beams-through-extended-finite-element-method-peridynamics" itemprop="url">Simulating the Fracture of Notched Mortar Beams through Extended Finite-Element Method and Peridynamics</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Das, Sumanta</span> ; <span class="author">Hoffarth, Canio</span> ; <span class="author">Ren, Bo</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Journal of Engineering Mechanics</span> </span> </div> <div class="abstract">This paper simulates fracture in notched mortar beams under three-point bending using extended finite element method (XFEM) and peridynamics. A three-phase microstructure (i.e., cement paste, aggregates, and paste-aggregate interface) is used for constitutive modeling of the mortar to obtain the elastic properties for simulation. In the XFEM approach, the simulated homogenized elastic modulus is used along with the total fracture energy of the cement mortar in a damage model to predict the fracture response of the mortar including crack propagation and its fracture parameters (Mode I stress intensity factor, <em>K<sub>IC</sub></em> and critical crack tip opening displacement, CTOD<sub><em>C</em></sub>). The damage model<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> incorporates a maximum principal stress-based damage initiation criteria and a traction-separation law for damage evolution. In the peridynamics approach, a bond-based model involving a prototype microelastic brittle (PMB) material model is used. The elastic properties and fracture energy release rates are used as inputs in the PMB model, along with the choice of peridynamic horizon size. Comparison with experimental fracture properties (<em>K<sub>IC</sub></em>, CTOD<sub><em>C</em></sub>) as well as crack propagation paths from digital image correlation show that both the approaches yield satisfactory results, particularly for <em>K<sub>IC</sub></em> and crack extension. Furthermore, both these methods can be adopted for fracture simulation of cement-based materials.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 11<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1061/(ASCE)EM.1943-7889.0001628" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1572459" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1061/(ASCE)EM.1943-7889.0001628</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1572459" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1572459" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9;"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator"/> <br/> <div class="col text-center mt-3"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.osti.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="col text-center small" style="margin-top: 0.5em;margin-bottom:2.0rem;"> <div class="row justify-content-center" style="color:white"> <div class="pure-menu pure-menu-horizontal" style='white-space:normal'> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="https://www.osti.gov/disclaim" class="pure-menu-link" target="_blank" ref="noopener noreferrer"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline d-print-none" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item" style='float:none;'><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span>Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item" style='float:none;'><a target="_blank" title="Vulnerability Disclosure Program" class="pure-menu-link" href="https://doe.responsibledisclosure.com/hc/en-us" rel="noopener noreferrer">Vulnerability Disclosure Program</a></li> <li class="d-block d-lg-none mb-1"></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.facebook.com/ostigov" target="_blank" class="pure-menu-link social ext fa fa-facebook" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Facebook</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://twitter.com/OSTIgov" target="_blank" class="pure-menu-link social ext fa fa-twitter" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Twitter</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.youtube.com/user/ostigov" target="_blank" class="pure-menu-link social ext fa fa-youtube-play" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Youtube</span></a></li> </ul> </div> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.240327.0205.css" rel="stylesheet"> <script src="/pages/js/pages.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- DOE PAGES v.240327.0205 --> </html>