DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States

Abstract

The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic–biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4];  [5];  [2];  [6];  [6];  [6];  [6];  [7];  [6];  [8];  [6];  [6];  [9];  [9];  [9];  [9];  [10] more »;  [10];  [11];  [11];  [12];  [13];  [3];  [3];  [14];  [15];  [15];  [15];  [16];  [3];  [17] « less
  1. Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720,, Department of Chemistry, University of California, Riverside, CA 92521,
  2. Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720,
  3. Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195,
  4. Department of Earth and Planetary Science, University of California, Berkeley, CA 94720,
  5. Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720,, Aerosol Dynamics Inc., Berkeley, CA 94710,
  6. National Exposure Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711,
  7. National Risk Management Laboratory, Office of Research and Development, US Environmental Protection, Agency, Research Triangle Park, NC 27711,
  8. Jacobs Technology, Inc., Research Triangle Park, NC 27711,
  9. Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309,, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309,
  10. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332,
  11. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309,, National Oceanic and Atmospheric Administration Earth System Research Laboratory, Boulder, CO 80305,
  12. Atmospheric Research and Analysis, Cary, NC 27513,
  13. Department of Meteorology, Pennsylvania State University, University Park, PA 16802,
  14. Department of Chemistry and Molecular Biology, University of Gothenberg, SE-41296 Gothenberg, Sweden,
  15. Aerosol Dynamics Inc., Berkeley, CA 94710,
  16. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
  17. Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720,, Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1420215
Alternate Identifier(s):
OSTI ID: 1456999
Grant/Contract Number:  
AC02-05CH11231; SC0016559; AGS-1250569; AGS-1644406
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 115 Journal Issue: 9; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; aerosol source apportionment; biogenic volatile organic compound oxidation; nitrogen oxides

Citation Formats

Zhang, Haofei, Yee, Lindsay D., Lee, Ben H., Curtis, Michael P., Worton, David R., Isaacman-VanWertz, Gabriel, Offenberg, John H., Lewandowski, Michael, Kleindienst, Tadeusz E., Beaver, Melinda R., Holder, Amara L., Lonneman, William A., Docherty, Kenneth S., Jaoui, Mohammed, Pye, Havala O. T., Hu, Weiwei, Day, Douglas A., Campuzano-Jost, Pedro, Jimenez, Jose L., Guo, Hongyu, Weber, Rodney J., de Gouw, Joost, Koss, Abigail R., Edgerton, Eric S., Brune, William, Mohr, Claudia, Lopez-Hilfiker, Felipe D., Lutz, Anna, Kreisberg, Nathan M., Spielman, Steve R., Hering, Susanne V., Wilson, Kevin R., Thornton, Joel A., and Goldstein, Allen H. Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. United States: N. p., 2018. Web. doi:10.1073/pnas.1717513115.
Zhang, Haofei, Yee, Lindsay D., Lee, Ben H., Curtis, Michael P., Worton, David R., Isaacman-VanWertz, Gabriel, Offenberg, John H., Lewandowski, Michael, Kleindienst, Tadeusz E., Beaver, Melinda R., Holder, Amara L., Lonneman, William A., Docherty, Kenneth S., Jaoui, Mohammed, Pye, Havala O. T., Hu, Weiwei, Day, Douglas A., Campuzano-Jost, Pedro, Jimenez, Jose L., Guo, Hongyu, Weber, Rodney J., de Gouw, Joost, Koss, Abigail R., Edgerton, Eric S., Brune, William, Mohr, Claudia, Lopez-Hilfiker, Felipe D., Lutz, Anna, Kreisberg, Nathan M., Spielman, Steve R., Hering, Susanne V., Wilson, Kevin R., Thornton, Joel A., & Goldstein, Allen H. Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. United States. https://doi.org/10.1073/pnas.1717513115
Zhang, Haofei, Yee, Lindsay D., Lee, Ben H., Curtis, Michael P., Worton, David R., Isaacman-VanWertz, Gabriel, Offenberg, John H., Lewandowski, Michael, Kleindienst, Tadeusz E., Beaver, Melinda R., Holder, Amara L., Lonneman, William A., Docherty, Kenneth S., Jaoui, Mohammed, Pye, Havala O. T., Hu, Weiwei, Day, Douglas A., Campuzano-Jost, Pedro, Jimenez, Jose L., Guo, Hongyu, Weber, Rodney J., de Gouw, Joost, Koss, Abigail R., Edgerton, Eric S., Brune, William, Mohr, Claudia, Lopez-Hilfiker, Felipe D., Lutz, Anna, Kreisberg, Nathan M., Spielman, Steve R., Hering, Susanne V., Wilson, Kevin R., Thornton, Joel A., and Goldstein, Allen H. Mon . "Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States". United States. https://doi.org/10.1073/pnas.1717513115.
@article{osti_1420215,
title = {Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States},
author = {Zhang, Haofei and Yee, Lindsay D. and Lee, Ben H. and Curtis, Michael P. and Worton, David R. and Isaacman-VanWertz, Gabriel and Offenberg, John H. and Lewandowski, Michael and Kleindienst, Tadeusz E. and Beaver, Melinda R. and Holder, Amara L. and Lonneman, William A. and Docherty, Kenneth S. and Jaoui, Mohammed and Pye, Havala O. T. and Hu, Weiwei and Day, Douglas A. and Campuzano-Jost, Pedro and Jimenez, Jose L. and Guo, Hongyu and Weber, Rodney J. and de Gouw, Joost and Koss, Abigail R. and Edgerton, Eric S. and Brune, William and Mohr, Claudia and Lopez-Hilfiker, Felipe D. and Lutz, Anna and Kreisberg, Nathan M. and Spielman, Steve R. and Hering, Susanne V. and Wilson, Kevin R. and Thornton, Joel A. and Goldstein, Allen H.},
abstractNote = {The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic–biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.},
doi = {10.1073/pnas.1717513115},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 9,
volume = 115,
place = {United States},
year = {Mon Feb 12 00:00:00 EST 2018},
month = {Mon Feb 12 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1717513115

Citation Metrics:
Cited by: 161 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: OA molecular-level measurements. (A) Organic species measured by GC×GC with x axis first dimension retention in n-alkane based index and y axis second dimension retention in time (RT2). Symbols represent individual organic species, with color indicating assigned source-based group (“anthro.” is short for “anthropogenic” and “BBOA” for “biomassmore » burning OA”). Symbol size is uniform for clear illustration. (B) Representative mass spectrum measured by CIMS using Γ ionization. The m/Q (Th) in blue are assigned to non-nitrogen-containing MTSOA. The chemical formulae of the main peaks (Γ removed) are labeled with the mass spectrum. (C) All speciated MTSOA by GC×GC (green) and CIMS (blue), in the $\overline{OS}$c-nC space. Grey represent all possible organic formulae. Generic pathways from monoterpenes (red pentagon) to functionalization and fragmentation products are shown. Size of MTSOA symbols indicate their average mass during SOAS.« less

Save / Share:

Works referenced in this record:

The nitrate radical: Physics, chemistry, and the atmosphere
journal, January 1991


Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements
journal, January 2015

  • Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 20
  • DOI: 10.5194/acp-15-11807-2015

Organic nitrate aerosol formation via NO<sub>3</sub> + biogenic volatile organic compounds in the southeastern United States
journal, January 2015

  • Ayres, B. R.; Allen, H. M.; Draper, D. C.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 23
  • DOI: 10.5194/acp-15-13377-2015

Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States
journal, May 2009

  • Goldstein, A. H.; Koven, C. D.; Heald, C. L.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 22
  • DOI: 10.1073/pnas.0904128106

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data
journal, January 2009

  • Ulbrich, I. M.; Canagaratna, M. R.; Zhang, Q.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 9
  • DOI: 10.5194/acp-9-2891-2009

Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin
journal, January 2007

  • Gelencsér, András; May, Barbara; Simpson, David
  • Journal of Geophysical Research, Vol. 112, Issue D23
  • DOI: 10.1029/2006JD008094

A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States: SOA FORMATION IN THE POLLUTED SOUTHEAST
journal, July 2007

  • Weber, Rodney J.; Sullivan, Amy P.; Peltier, Richard E.
  • Journal of Geophysical Research: Atmospheres, Vol. 112, Issue D13
  • DOI: 10.1029/2007JD008408

Known and Unexplored Organic Constituents in the Earth's Atmosphere
journal, March 2007

  • Goldstein, Allen H.; Galbally, Ian E.
  • Environmental Science & Technology, Vol. 41, Issue 5
  • DOI: 10.1021/es072476p

Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry
journal, February 2012

  • Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H.
  • Analytical Chemistry, Vol. 84, Issue 5
  • DOI: 10.1021/ac2030464

Fundamental Time Scales Governing Organic Aerosol Multiphase Partitioning and Oxidative Aging
journal, August 2015

  • Zhang, Haofei; Worton, David R.; Shen, Steve
  • Environmental Science & Technology, Vol. 49, Issue 16
  • DOI: 10.1021/acs.est.5b02115

Effects of emission reductions on organic aerosol in the southeastern United States
journal, January 2016

  • Blanchard, C. L.; Hidy, G. M.; Shaw, S.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 1
  • DOI: 10.5194/acp-16-215-2016

Why do models overestimate surface ozone in the Southeast United States?
journal, January 2016

  • Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 21
  • DOI: 10.5194/acp-16-13561-2016

A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

Predicting Thermal Behavior of Secondary Organic Aerosols
journal, August 2017

  • Offenberg, John H.; Lewandowski, Michael; Kleindienst, Tadeusz E.
  • Environmental Science & Technology, Vol. 51, Issue 17
  • DOI: 10.1021/acs.est.7b01968

Effect of NO<sub>x</sub> level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes
journal, January 2007

  • Ng, N. L.; Chhabra, P. S.; Chan, A. W. H.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 19
  • DOI: 10.5194/acp-7-5159-2007

Autoxidation of Organic Compounds in the Atmosphere
journal, September 2013

  • Crounse, John D.; Nielsen, Lasse B.; Jørgensen, Solvejg
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 20
  • DOI: 10.1021/jz4019207

Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation
journal, September 2016

  • Isaacman-VanWertz, Gabriel; Yee, Lindsay D.; Kreisberg, Nathan M.
  • Environmental Science & Technology, Vol. 50, Issue 18
  • DOI: 10.1021/acs.est.6b01674

Real-Time Continuous Characterization of Secondary Organic Aerosol Derived from Isoprene Epoxydiols in Downtown Atlanta, Georgia, Using the Aerodyne Aerosol Chemical Speciation Monitor
journal, May 2013

  • Budisulistiorini, Sri Hapsari; Canagaratna, Manjula R.; Croteau, Philip L.
  • Environmental Science & Technology, Vol. 47, Issue 11
  • DOI: 10.1021/es400023n

Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets
journal, January 2016

  • Lee, Ben H.; Mohr, Claudia; Lopez-Hilfiker, Felipe D.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 6
  • DOI: 10.1073/pnas.1508108113

The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study
journal, September 1988


Isomerization of Second-Generation Isoprene Peroxy Radicals: Epoxide Formation and Implications for Secondary Organic Aerosol Yields
journal, April 2017

  • D’Ambro, Emma L.; Møller, Kristian H.; Lopez-Hilfiker, Felipe D.
  • Environmental Science & Technology, Vol. 51, Issue 9
  • DOI: 10.1021/acs.est.7b00460

Chemical Sinks of Organic Aerosol: Kinetics and Products of the Heterogeneous Oxidation of Erythritol and Levoglucosan
journal, September 2010

  • Kessler, Sean H.; Smith, Jared D.; Che, Dung L.
  • Environmental Science & Technology, Vol. 44, Issue 18
  • DOI: 10.1021/es101465m

A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)
journal, January 2014

  • Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 4
  • DOI: 10.5194/amt-7-983-2014

Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States
journal, December 2014

  • Xu, Lu; Guo, Hongyu; Boyd, Christopher M.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 1
  • DOI: 10.1073/pnas.1417609112

Hydroxydicarboxylic Acids:  Markers for Secondary Organic Aerosol from the Photooxidation of α-Pinene
journal, March 2007

  • Claeys, Magda; Szmigielski, Rafal; Kourtchev, Ivan
  • Environmental Science & Technology, Vol. 41, Issue 5
  • DOI: 10.1021/es0620181

Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change: FUTURE PREDICTED CHANGE IN GLOBAL SOA
journal, March 2008

  • Heald, C. L.; Henze, D. K.; Horowitz, L. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 113, Issue D5
  • DOI: 10.1029/2007JD009092

Source apportionment of airborne particulate matter using organic compounds as tracers
journal, November 1996


Chemical climatology of the southeastern United States, 1999–2013
journal, January 2014

  • Hidy, G. M.; Blanchard, C. L.; Baumann, K.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 21
  • DOI: 10.5194/acp-14-11893-2014

Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons
journal, October 2014

  • Fry, Juliane L.; Draper, Danielle C.; Barsanti, Kelley C.
  • Environmental Science & Technology, Vol. 48, Issue 20
  • DOI: 10.1021/es502204x

Aging of Organic Aerosol: Bridging the Gap Between Laboratory and Field Studies
journal, May 2007


Secondary organic aerosol formation from the β-pinene+NO 3 system: effect of humidity and peroxy radical fate
journal, January 2015


Lung Toxicity of Ambient Particulate Matter from Southeastern U.S. Sites with Different Contributing Sources: Relationships between Composition and Effects
journal, September 2006

  • Seagrave, JeanClare; McDonald, Jacob D.; Bedrick, Edward
  • Environmental Health Perspectives, Vol. 114, Issue 9
  • DOI: 10.1289/ehp.9234

Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA
journal, February 2016

  • Lopez-Hilfiker, F. D.; Mohr, C.; D’Ambro, E. L.
  • Environmental Science & Technology, Vol. 50, Issue 5
  • DOI: 10.1021/acs.est.5b04769

Gas-phase radical chemistry in the troposphere
journal, January 2005

  • Monks, Paul S.
  • Chemical Society Reviews, Vol. 34, Issue 5
  • DOI: 10.1039/b307982c

Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location
journal, December 2007


Modeling the Current and Future Roles of Particulate Organic Nitrates in the Southeastern United States
journal, November 2015

  • Pye, Havala O. T.; Luecken, Deborah J.; Xu, Lu
  • Environmental Science & Technology, Vol. 49, Issue 24
  • DOI: 10.1021/acs.est.5b03738

To What Extent Can Biogenic SOA be Controlled?
journal, May 2010

  • Carlton, Annmarie G.; Pinder, Robert W.; Bhave, Prakash V.
  • Environmental Science & Technology, Vol. 44, Issue 9
  • DOI: 10.1021/es903506b

Secondary organic aerosol formation from the oxidation of a series of sesquiterpenes: α-cedrene, β-caryophyllene, α-humulene and α-farnesene with O3, OH and NO3 radicals
journal, January 2013

  • Jaoui, Mohammed; Kleindienst, Tadeusz E.; Docherty, Kenneth S.
  • Environmental Chemistry, Vol. 10, Issue 3
  • DOI: 10.1071/EN13025

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.