Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICF capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original. We employ the same computational setup as in O. Larroche, which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule compression, or effects associated with the interface, which are expected to be important. As a result, studies of such effects are left for future work.
- Research Organization:
- Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC52-06NA25396
- OSTI ID:
- 1435538
- Alternate ID(s):
- OSTI ID: 1432413
- Report Number(s):
- LA-UR-18-20952; TRN: US1900068
- Journal Information:
- Physics of Plasmas, Vol. 25, Issue 5; ISSN 1070-664X
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Multi-species plasma transport in 1D direct-drive ICF simulations
|
journal | March 2019 |
The modeling of delayed-onset Rayleigh-Taylor and transition to mixing in laser-driven HED experiments
|
journal | May 2019 |
Probing ion species separation and ion thermal decoupling in shock-driven implosions using multiple nuclear reaction histories
|
journal | July 2019 |
Similar Records
Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions
First observation of increased DT yield over prediction due to addition of hydrogen