skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries

Abstract

Solid-state lithium (Li) metal batteries are prominent among next-generation energy storage technologies due to their significantly high energy density and reduced safety risks. Previously, solid electrolytes have been intensively studied and several materials with high ionic conductivity have been identified. However, there are still at least three obstacles before making the Li metal foil-based solid-state systems viable, namely, high interfacial resistance at the Li/electrolyte interface, low areal capacity, and poor power output. The problems are addressed by incorporating a flowable interfacial layer and three-dimensional Li into the system. The flowable interfacial layer can accommodate the interfacial fluctuation and guarantee excellent adhesion at all time, whereas the three-dimensional Li significantly reduces the interfacial fluctuation from the whole electrode level (tens of micrometers) to local scale (submicrometer) and also decreases the effective current density for high-capacity and high-power operations. As a consequence, both symmetric and full-cell configurations can achieve greatly improved electrochemical performances in comparison to the conventional Li foil, which are among the best reported values in the literature. Noticeably, solid-state full cells paired with high–mass loading LiFePO4 exhibited, at 80°C, a satisfactory specific capacity even at a rate of 5 C (110 mA·hour g-1) and a capacity retention of 93.6%more » after 300 cycles at a current density of 3 mA cm-2 using a composite solid electrolyte middle layer. In addition, when a ceramic electrolyte middle layer was adopted, stable cycling with greatly improved capacity could even be realized at room temperature.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [2]
  1. Stanford Univ., CA (United States)
  2. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1419638
Grant/Contract Number:  
AC02-76SF00515; award351198; Battery Materials Research (BMR) program; award351199; Battery 500 Consortium program
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 3; Journal Issue: 10; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Liu, Yayuan, Lin, Dingchang, Jin, Yang, Liu, Kai, Tao, Xinyong, Zhang, Qiuhong, Zhang, Xiaokun, and Cui, Yi. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. United States: N. p., 2017. Web. https://doi.org/10.1126/sciadv.aao0713.
Liu, Yayuan, Lin, Dingchang, Jin, Yang, Liu, Kai, Tao, Xinyong, Zhang, Qiuhong, Zhang, Xiaokun, & Cui, Yi. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. United States. https://doi.org/10.1126/sciadv.aao0713
Liu, Yayuan, Lin, Dingchang, Jin, Yang, Liu, Kai, Tao, Xinyong, Zhang, Qiuhong, Zhang, Xiaokun, and Cui, Yi. Sun . "Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries". United States. https://doi.org/10.1126/sciadv.aao0713. https://www.osti.gov/servlets/purl/1419638.
@article{osti_1419638,
title = {Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries},
author = {Liu, Yayuan and Lin, Dingchang and Jin, Yang and Liu, Kai and Tao, Xinyong and Zhang, Qiuhong and Zhang, Xiaokun and Cui, Yi},
abstractNote = {Solid-state lithium (Li) metal batteries are prominent among next-generation energy storage technologies due to their significantly high energy density and reduced safety risks. Previously, solid electrolytes have been intensively studied and several materials with high ionic conductivity have been identified. However, there are still at least three obstacles before making the Li metal foil-based solid-state systems viable, namely, high interfacial resistance at the Li/electrolyte interface, low areal capacity, and poor power output. The problems are addressed by incorporating a flowable interfacial layer and three-dimensional Li into the system. The flowable interfacial layer can accommodate the interfacial fluctuation and guarantee excellent adhesion at all time, whereas the three-dimensional Li significantly reduces the interfacial fluctuation from the whole electrode level (tens of micrometers) to local scale (submicrometer) and also decreases the effective current density for high-capacity and high-power operations. As a consequence, both symmetric and full-cell configurations can achieve greatly improved electrochemical performances in comparison to the conventional Li foil, which are among the best reported values in the literature. Noticeably, solid-state full cells paired with high–mass loading LiFePO4 exhibited, at 80°C, a satisfactory specific capacity even at a rate of 5 C (110 mA·hour g-1) and a capacity retention of 93.6% after 300 cycles at a current density of 3 mA cm-2 using a composite solid electrolyte middle layer. In addition, when a ceramic electrolyte middle layer was adopted, stable cycling with greatly improved capacity could even be realized at room temperature.},
doi = {10.1126/sciadv.aao0713},
journal = {Science Advances},
number = 10,
volume = 3,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Polymer solid electrolytes - an overview
journal, December 1983


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

The role of ionic salts in determining Tg and ionic conductivity in concentrated PEG electrolyte solutions
journal, January 1995


Technology: A solid future
journal, October 2015


Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

Preparation of thick-film LiNi1/3Co1/3Mn1/3O2 electrodes by aerosol deposition and its application to all-solid-state batteries
journal, December 2014


Poly(ethylene oxide)-based electrolytes for lithium-ion batteries
journal, January 2015

  • Xue, Zhigang; He, Dan; Xie, Xiaolin
  • Journal of Materials Chemistry A, Vol. 3, Issue 38
  • DOI: 10.1039/C5TA03471J

Atomic Layer Deposition of Li x Al y S Solid-State Electrolytes for Stabilizing Lithium-Metal Anodes
journal, April 2016


High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life
journal, October 2016


A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Solid-state, rechargeable Li/LiFePO4 polymer battery for electric vehicle application
journal, October 2010


Sustainability and in situ monitoring in battery development
journal, December 2016

  • Grey, C. P.; Tarascon, J. M.
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4777

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Engineered Interfaces in Hybrid Ceramic–Polymer Electrolytes for Use in All-Solid-State Li Batteries
journal, December 2016


High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte
journal, September 2016

  • Luo, Wei; Gong, Yunhui; Zhu, Yizhou
  • Journal of the American Chemical Society, Vol. 138, Issue 37
  • DOI: 10.1021/jacs.6b06777

Mechanical characterization of LiPON films using nanoindentation
journal, October 2011


The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Failure Mode of Lithium Metal Batteries with a Block Copolymer Electrolyte Analyzed by X-Ray Microtomography
journal, January 2015

  • Devaux, Didier; Harry, Katherine J.; Parkinson, Dilworth Y.
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0721507jes

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Advanced, lithium batteries based on high-performance composite polymer electrolytes
journal, November 2006


Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries
journal, January 2016

  • Varzi, Alberto; Raccichini, Rinaldo; Passerini, Stefano
  • Journal of Materials Chemistry A, Vol. 4, Issue 44
  • DOI: 10.1039/C6TA07384K

The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes
journal, January 2014

  • Cheng, Lei; Crumlin, Ethan J.; Chen, Wei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 34
  • DOI: 10.1039/C4CP02921F

Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries
journal, December 2016

  • Zeng, Xian-Xiang; Yin, Ya-Xia; Li, Nian-Wu
  • Journal of the American Chemical Society, Vol. 138, Issue 49
  • DOI: 10.1021/jacs.6b10088

Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries
journal, January 2016

  • Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19892

Lithium Metal Stability in Batteries with Block Copolymer Electrolytes
journal, January 2013

  • Hallinan, Daniel T.; Mullin, Scott A.; Stone, Gregory M.
  • Journal of The Electrochemical Society, Vol. 160, Issue 3
  • DOI: 10.1149/2.030303jes

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Lithium deposit morphology from polymer electrolytes
journal, October 1995


Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


Low-Cost Hollow Mesoporous Polymer Spheres and All-Solid-State Lithium, Sodium Batteries
journal, October 2015

  • Zhou, Weidong; Gao, Hongcai; Goodenough, John B.
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501802

Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries
journal, August 2016


Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Effect of Lithium Salt in Nanostructured Silica–Polyethylene Glycol Solid Electrolytes for Li-Ion Battery Applications
journal, September 2016

  • Vélez, John Fredy; Aparicio, Mario; Mosa, Jadra
  • The Journal of Physical Chemistry C, Vol. 120, Issue 40
  • DOI: 10.1021/acs.jpcc.6b07181

An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

Interface Stability in Solid-State Batteries
journal, December 2015


Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries
journal, August 2015


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

A lithium–sulfur battery using a solid, glass-type P2S5–Li2S electrolyte
journal, August 2013


Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth
journal, January 2016

  • Zhang, Rui; Cheng, Xin-Bing; Zhao, Chen-Zi
  • Advanced Materials, Vol. 28, Issue 11
  • DOI: 10.1002/adma.201504117

Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4
journal, January 2013

  • Liu, Zengcai; Fu, Wujun; Payzant, E. Andrew
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 975-978
  • DOI: 10.1021/ja3110895

Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte
journal, July 2016

  • Zhou, Weidong; Wang, Shaofei; Li, Yutao
  • Journal of the American Chemical Society, Vol. 138, Issue 30
  • DOI: 10.1021/jacs.6b05341

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12.
journal, December 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • ChemInform, Vol. 38, Issue 50
  • DOI: 10.1002/chin.200750009

    Works referencing / citing this record:

    Long Cycle Life Lithium Metal Batteries Enabled with Upright Lithium Anode
    journal, February 2019

    • Chen, Yuqing; Yue, Meng; Liu, Cuilian
    • Advanced Functional Materials, Vol. 29, Issue 15
    • DOI: 10.1002/adfm.201806752

    Intercalated Electrolyte with High Transference Number for Dendrite‐Free Solid‐State Lithium Batteries
    journal, April 2019

    • Chen, Long; Li, Wenxin; Fan, Li‐Zhen
    • Advanced Functional Materials, Vol. 29, Issue 28
    • DOI: 10.1002/adfm.201901047

    Controlling Li Ion Flux through Materials Innovation for Dendrite‐Free Lithium Metal Anodes
    journal, September 2019

    • Wang, Chengzhi; Wang, Aoxuan; Ren, Lingxiao
    • Advanced Functional Materials, Vol. 29, Issue 49
    • DOI: 10.1002/adfm.201905940

    Suppressing Li Metal Dendrites Through a Solid Li‐Ion Backup Layer
    journal, August 2018

    • Salvatierra, Rodrigo V.; López‐Silva, Gladys A.; Jalilov, Almaz S.
    • Advanced Materials, Vol. 30, Issue 50
    • DOI: 10.1002/adma.201803869

    Tape‐Casting Li 0.34 La 0.56 TiO 3 Ceramic Electrolyte Films Permit High Energy Density of Lithium‐Metal Batteries
    journal, November 2019

    • Jiang, Zhouyang; Wang, Suqing; Chen, Xinzhi
    • Advanced Materials, Vol. 32, Issue 6
    • DOI: 10.1002/adma.201906221

    A Lithium‐Ion Pump Based on Piezoelectric Effect for Improved Rechargeability of Lithium Metal Anode
    journal, September 2019


    2D Materials for Lithium/Sodium Metal Anodes
    journal, October 2018

    • Zhang, Chanyuan; Wang, Aoxuan; Zhang, Jiahua
    • Advanced Energy Materials, Vol. 8, Issue 34
    • DOI: 10.1002/aenm.201802833

    Mixed Ion and Electron‐Conducting Scaffolds for High‐Rate Lithium Metal Anodes
    journal, April 2019


    Artificial Solid‐Electrolyte Interphase Enabled High‐Capacity and Stable Cycling Potassium Metal Batteries
    journal, September 2019

    • Wang, Huwei; Hu, Junyang; Dong, Jiahui
    • Advanced Energy Materials, Vol. 9, Issue 43
    • DOI: 10.1002/aenm.201902697

    A 3D Lithium/Carbon Fiber Anode with Sustained Electrolyte Contact for Solid‐State Batteries
    journal, December 2019

    • Zhang, Ying; Shi, Yang; Hu, Xin‐Cheng
    • Advanced Energy Materials, Vol. 10, Issue 3
    • DOI: 10.1002/aenm.201903325

    Design Principles of the Anode–Electrolyte Interface for All Solid‐State Lithium Metal Batteries
    journal, October 2019


    Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries
    journal, June 2019


    An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage
    journal, July 2018


    Designing solid-state electrolytes for safe, energy-dense batteries
    journal, February 2020


    A self-supported, three-dimensional porous copper film as a current collector for advanced lithium metal batteries
    journal, January 2019

    • Shi, Yujun; Wang, Zhenbin; Gao, Hui
    • Journal of Materials Chemistry A, Vol. 7, Issue 3
    • DOI: 10.1039/c8ta09384a

    A bird's-eye view of Li-stuffed garnet-type Li 7 La 3 Zr 2 O 12 ceramic electrolytes for advanced all-solid-state Li batteries
    journal, January 2019

    • Samson, Alfred Junio; Hofstetter, Kyle; Bag, Sourav
    • Energy & Environmental Science, Vol. 12, Issue 10
    • DOI: 10.1039/c9ee01548e

    A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries
    journal, January 2019

    • Gurung, Ashim; Pokharel, Jyotshna; Baniya, Abiral
    • Sustainable Energy & Fuels, Vol. 3, Issue 12
    • DOI: 10.1039/c9se00549h

    MXene-engineered lithium–sulfur batteries
    journal, January 2019

    • Xiao, Zhubing; Li, Zhonglin; Meng, Xueping
    • Journal of Materials Chemistry A, Vol. 7, Issue 40
    • DOI: 10.1039/c9ta08600e

    Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes
    journal, April 2019


    Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes
    journal, February 2019