DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature

Abstract

Supercooled liquid sulfur microdroplets were directly generated from polysulfide electrochemical oxidation on various metal-containing electrodes. The sulfur droplets remain liquid at 155 °C below sulfur’s melting point (Tm= 115 °C), with fractional supercooling change (TmTsc)/Tmlarger than 0.40. In operando light microscopy captured the rapid merging and shape relaxation of sulfur droplets, indicating their liquid nature. Micropatterned electrode and electrochemical current allow precise control of the location and size of supercooled microdroplets, respectively. Using this platform, we initiated and observed the rapid solidification of supercooled sulfur microdroplets upon crystalline sulfur touching, which confirms supercooled sulfur’s metastability at room temperature. Furthermore, the formation of liquid sulfur in electrochemical cell enriches lithium-sulfur-electrolyte phase diagram and potentially may create new opportunities for high-energy Li-S batteries.

Authors:
ORCiD logo [1];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [3];  [2];  [4];  [5]
  1. Department of Physics, Stanford University, Stanford, CA 94305,, Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305,, School of Chemical &, Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332,
  2. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305,
  3. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305,, College of Materials Science and Engineering, Zhejiang University of Technology, 310014 Hangzhou, China,
  4. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305,, SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, Menlo Park, CA 94025,
  5. Department of Physics, Stanford University, Stanford, CA 94305,, Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1489413
Alternate Identifier(s):
OSTI ID: 1493456
Grant/Contract Number:  
Battery Materials Research (BMR) Program; Battery500 Consortium; AC02-76SF00515
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 116 Journal Issue: 3; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; supercooled liquids; liquid sulfur droplets; in situ optical microscopy; Li-S; batteries; crystallization

Citation Formats

Liu, Nian, Zhou, Guangmin, Yang, Ankun, Yu, Xiaoyun, Shi, Feifei, Sun, Jie, Zhang, Jinsong, Liu, Bofei, Wu, Chun-Lan, Tao, Xinyong, Sun, Yongming, Cui, Yi, and Chu, Steven. Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature. United States: N. p., 2019. Web. doi:10.1073/pnas.1817286116.
Liu, Nian, Zhou, Guangmin, Yang, Ankun, Yu, Xiaoyun, Shi, Feifei, Sun, Jie, Zhang, Jinsong, Liu, Bofei, Wu, Chun-Lan, Tao, Xinyong, Sun, Yongming, Cui, Yi, & Chu, Steven. Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature. United States. https://doi.org/10.1073/pnas.1817286116
Liu, Nian, Zhou, Guangmin, Yang, Ankun, Yu, Xiaoyun, Shi, Feifei, Sun, Jie, Zhang, Jinsong, Liu, Bofei, Wu, Chun-Lan, Tao, Xinyong, Sun, Yongming, Cui, Yi, and Chu, Steven. Wed . "Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature". United States. https://doi.org/10.1073/pnas.1817286116.
@article{osti_1489413,
title = {Direct electrochemical generation of supercooled sulfur microdroplets well below their melting temperature},
author = {Liu, Nian and Zhou, Guangmin and Yang, Ankun and Yu, Xiaoyun and Shi, Feifei and Sun, Jie and Zhang, Jinsong and Liu, Bofei and Wu, Chun-Lan and Tao, Xinyong and Sun, Yongming and Cui, Yi and Chu, Steven},
abstractNote = {Supercooled liquid sulfur microdroplets were directly generated from polysulfide electrochemical oxidation on various metal-containing electrodes. The sulfur droplets remain liquid at 155 °C below sulfur’s melting point (Tm= 115 °C), with fractional supercooling change (Tm–Tsc)/Tmlarger than 0.40. In operando light microscopy captured the rapid merging and shape relaxation of sulfur droplets, indicating their liquid nature. Micropatterned electrode and electrochemical current allow precise control of the location and size of supercooled microdroplets, respectively. Using this platform, we initiated and observed the rapid solidification of supercooled sulfur microdroplets upon crystalline sulfur touching, which confirms supercooled sulfur’s metastability at room temperature. Furthermore, the formation of liquid sulfur in electrochemical cell enriches lithium-sulfur-electrolyte phase diagram and potentially may create new opportunities for high-energy Li-S batteries.},
doi = {10.1073/pnas.1817286116},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 3,
volume = 116,
place = {United States},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.1817286116

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

In search of a theory of supercooled liquids
journal, November 2008

  • Kivelson, Steven A.; Tarjus, Gilles
  • Nature Materials, Vol. 7, Issue 11
  • DOI: 10.1038/nmat2304

Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium–sulfur cells
journal, October 2015

  • Jiang, Jian; Zhu, Jianhui; Ai, Wei
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9622

Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles
journal, October 2014

  • Sun, Jun; He, Longbing; Lo, Yu-Chieh
  • Nature Materials, Vol. 13, Issue 11
  • DOI: 10.1038/nmat4105

The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty
journal, January 2013

  • Riechers, Birte; Wittbracht, Frank; Hütten, Andreas
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 16
  • DOI: 10.1039/c3cp42437e

Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature
journal, June 2014

  • Sellberg, J. A.; Huang, C.; McQueen, T. A.
  • Nature, Vol. 510, Issue 7505
  • DOI: 10.1038/nature13266

Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries
journal, August 2014

  • Pang, Quan; Kundu, Dipan; Cuisinier, Marine
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5759

Electrocatalysis of Lithium Polysulfides: Current Collectors as Electrodes in Li/S Battery Configuration
journal, March 2015

  • Babu, Ganguli; Ababtain, Khalid; Ng, K. Y. Simon
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08763

Kinetics of Crystalline Nucleus Formation in Supercooled Liquid Tin 1,2
journal, May 1952

  • Pound, Guy M.; Mer, Victor K. La
  • Journal of the American Chemical Society, Vol. 74, Issue 9
  • DOI: 10.1021/ja01129a044

The glassy and supercooled state of elemental sulfur: Vibrational modes, structure metastability, and polymer content
journal, September 2013

  • Andrikopoulos, K. S.; Kalampounias, A. G.; Falagara, O.
  • The Journal of Chemical Physics, Vol. 139, Issue 12
  • DOI: 10.1063/1.4821592

Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts
journal, December 2015


Aerodynamic levitation, supercooled liquids and glass formation
journal, May 2017


A Topographic View of Supercooled Liquids and Glass Formation
journal, March 1995


Substrate-enhanced supercooling in AuSi eutectic droplets
journal, April 2010

  • Schülli, T. U.; Daudin, R.; Renaud, G.
  • Nature, Vol. 464, Issue 7292
  • DOI: 10.1038/nature08986

Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium–Sulfur Batteries
journal, May 2015


Antifreeze and Ice Nucleator Proteins in Terrestrial Arthropods
journal, March 2001


Gibbs?Thomson effects in phase transformations
journal, April 2005


A metastable liquid melted from a crystalline solid under decompression
journal, January 2017

  • Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14260

Supercooled liquids and the glass transition
journal, March 2001

  • Debenedetti, Pablo G.; Stillinger, Frank H.
  • Nature, Vol. 410, Issue 6825
  • DOI: 10.1038/35065704

Kinetics of Solidification of Supercooled Liquid Mercury Droplets
journal, March 1952

  • Turnbull, David
  • The Journal of Chemical Physics, Vol. 20, Issue 3
  • DOI: 10.1063/1.1700435

Predicting the composition and formation of solid products in lithium–sulfur batteries by using an experimental phase diagram
journal, January 2016

  • Dibden, J. W.; Smith, J. W.; Zhou, N.
  • Chemical Communications, Vol. 52, Issue 87
  • DOI: 10.1039/C6CC05881G

Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering
journal, February 2016

  • Çınar, Simge; Tevis, Ian D.; Chen, Jiahao
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep21864

Supercooled Sulfur and its Viscosity
journal, October 1945

  • Fanelli, R.
  • Journal of the American Chemical Society, Vol. 67, Issue 10
  • DOI: 10.1021/ja01226a061

High Energy Rechargeable Li-S Cells for EV Application: Status, Remaining Problems and Solutions
conference, January 2010

  • Mikhaylik, Yuriy V.; Kovalev, Igor; Schock, Riley
  • 216th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3414001

Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Kinetics of Crystal Nucleation in Polyethylene
journal, September 1962

  • Cormia, R. L.; Price, F. P.; Turnbull, D.
  • The Journal of Chemical Physics, Vol. 37, Issue 6
  • DOI: 10.1063/1.1733282

Designing high-energy lithium–sulfur batteries
journal, January 2016

  • Seh, Zhi Wei; Sun, Yongming; Zhang, Qianfan
  • Chemical Society Reviews, Vol. 45, Issue 20
  • DOI: 10.1039/C5CS00410A

Nucleation in Liquid Sulfur Droplets
journal, October 1970

  • Hamada, Shuichi; Nakazawa, Yoshihiro; Shirai, Toshiaki
  • Bulletin of the Chemical Society of Japan, Vol. 43, Issue 10
  • DOI: 10.1246/bcsj.43.3096

Supercooled and glassy water
journal, October 2003


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Heat capacity and glass transition behavior of amorphous ice
journal, June 1988

  • Handa, Y. P.; Klug, D. D.
  • The Journal of Physical Chemistry, Vol. 92, Issue 12
  • DOI: 10.1021/j100323a005

Observation and Quantification of Nanoscale Processes in Lithium Batteries by Operando Electrochemical (S)TEM
journal, February 2015


In-Situ Raman Investigation of Polysulfide Formation in Li-S Cells
journal, January 2013

  • Hagen, M.; Schiffels, P.; Hammer, M.
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.045308jes

Formation of Crystal Nuclei in Liquid Metals
journal, October 1950


Supercooling enables long-term transplantation survival following 4 days of liver preservation
journal, June 2014

  • Berendsen, Tim A.; Bruinsma, Bote G.; Puts, Catheleyne F.
  • Nature Medicine, Vol. 20, Issue 7
  • DOI: 10.1038/nm.3588

Freezing and Injury in Plants
journal, June 1976


A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Rate of Nucleation in Condensed Systems
journal, January 1949

  • Turnbull, D.; Fisher, J. C.
  • The Journal of Chemical Physics, Vol. 17, Issue 1
  • DOI: 10.1063/1.1747055

Formation of Metastable Liquid Catalyst during Subeutectic Growth of Germanium Nanowires
journal, August 2010

  • Gamalski, A. D.; Tersoff, J.; Sharma, R.
  • Nano Letters, Vol. 10, Issue 8
  • DOI: 10.1021/nl101349e