skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework

Abstract

Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al 4Li 9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF 3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al 4Li 9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zero volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm –2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. Here, the simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1389865
Grant/Contract Number:  
AC02-76SF00515; award343944; BMR program and Battery 500 Consortium
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 3; Journal Issue: 9; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Wang, Hansen, Lin, Dingchang, Liu, Yayuan, Li, Yuzhang, and Cui, Yi. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. United States: N. p., 2017. Web. doi:10.1126/sciadv.1701301.
Wang, Hansen, Lin, Dingchang, Liu, Yayuan, Li, Yuzhang, & Cui, Yi. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. United States. doi:10.1126/sciadv.1701301.
Wang, Hansen, Lin, Dingchang, Liu, Yayuan, Li, Yuzhang, and Cui, Yi. Fri . "Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework". United States. doi:10.1126/sciadv.1701301. https://www.osti.gov/servlets/purl/1389865.
@article{osti_1389865,
title = {Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework},
author = {Wang, Hansen and Lin, Dingchang and Liu, Yayuan and Li, Yuzhang and Cui, Yi},
abstractNote = {Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al4Li9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al4Li9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zero volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm–2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. Here, the simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.},
doi = {10.1126/sciadv.1701301},
journal = {Science Advances},
number = 9,
volume = 3,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

First-principles calculation of the pressure dependence of phase equilibria in the Al-Li system
journal, March 1996

  • Sluiter, Marcel H. F.; Watanabe, Y.; Fontaine, D. de
  • Physical Review B, Vol. 53, Issue 10
  • DOI: 10.1103/PhysRevB.53.6137

All-Integrated Bifunctional Separator for Li Dendrite Detection via Novel Solution Synthesis of a Thermostable Polyimide Separator
journal, August 2016

  • Lin, Dingchang; Zhuo, Denys; Liu, Yayuan
  • Journal of the American Chemical Society, Vol. 138, Issue 34
  • DOI: 10.1021/jacs.6b06324

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
journal, September 2014

  • Yan, Kai; Lee, Hyun-Wook; Gao, Teng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503125u

The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems
journal, January 1989

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 136, Issue 11
  • DOI: 10.1149/1.2096425

Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators
journal, April 2012

  • Ryou, Myung-Hyun; Lee, Dong Jin; Lee, Je-Nam
  • Advanced Energy Materials, Vol. 2, Issue 6
  • DOI: 10.1002/aenm.201100687

Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolution-Deposition Cycles
journal, January 1999

  • Shiraishi, Soshi
  • Journal of The Electrochemical Society, Vol. 146, Issue 5
  • DOI: 10.1149/1.1391818

Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix
journal, April 2017

  • Lin, Dingchang; Zhao, Jie; Sun, Jie
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 18
  • DOI: 10.1073/pnas.1619489114

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

A reversible dendrite-free high-areal-capacity lithium metal electrode
journal, April 2017

  • Wang, Hui; Matsui, Masaki; Kuwata, Hiroko
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15106

Lithium/sulfur batteries with high specific energy: old challenges and new opportunities
journal, January 2013

  • Song, Min-Kyu; Cairns, Elton J.; Zhang, Yuegang
  • Nanoscale, Vol. 5, Issue 6
  • DOI: 10.1039/c2nr33044j

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities
journal, January 2016

  • Choudhury, Snehashis; Archer, Lynden A.
  • Advanced Electronic Materials, Vol. 2, Issue 2
  • DOI: 10.1002/aelm.201500246

Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries
journal, August 2015


Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon
journal, May 2017


The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition
journal, February 2012


Advances in Li–S batteries
journal, January 2010

  • Ji, Xiulei; Nazar, Linda F.
  • Journal of Materials Chemistry, Vol. 20, Issue 44, p. 9821-9826
  • DOI: 10.1039/b925751a

Metallic anodes for next generation secondary batteries
journal, January 2013

  • Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk
  • Chemical Society Reviews, Vol. 42, Issue 23
  • DOI: 10.1039/c3cs60177c

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Opportunities and challenges for a sustainable energy future
journal, August 2012

  • Chu, Steven; Majumdar, Arun
  • Nature, Vol. 488, Issue 7411, p. 294-303
  • DOI: 10.1038/nature11475

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating
journal, November 2016


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Future prospects of the lithium metal anode
journal, September 1997


Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer
journal, March 2017

  • Liu, Kai; Pei, Allen; Lee, Hye Ryoung
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.6b13314

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Coated Lithium Powder (CLiP) Electrodes for Lithium-Metal Batteries
journal, November 2013

  • Heine, Jennifer; Krüger, Steffen; Hartnig, Christoph
  • Advanced Energy Materials, Vol. 4, Issue 5
  • DOI: 10.1002/aenm.201300815

Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes
journal, January 2017


Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

    Works referencing / citing this record:

    Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries
    journal, January 2019

    • Zhao, Qiang; Hao, Xiaoge; Su, Shiming
    • Journal of Materials Chemistry A, Vol. 7, Issue 26
    • DOI: 10.1039/c9ta04240g

    Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium–sulfur batteries
    journal, July 2019


    Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium–sulfur batteries
    journal, July 2019


    Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries
    journal, January 2019

    • Zhao, Qiang; Hao, Xiaoge; Su, Shiming
    • Journal of Materials Chemistry A, Vol. 7, Issue 26
    • DOI: 10.1039/c9ta04240g

    Review—Li Metal Anode in Working Lithium-Sulfur Batteries
    journal, June 2017

    • Cheng, Xin-Bing; Huang, Jia-Qi; Zhang, Qiang
    • Journal of The Electrochemical Society, Vol. 165, Issue 1
    • DOI: 10.1149/2.0111801jes